

Introduction

Downstream tasks: reconstruction, planning, mapping, rendering, pose refinement

Contributions

- We introduce AutoNeRF, a modular policy trained with Reinforcement Learning (RL) that can explore an unseen 3D scene to collect data for training a NeRF model autonomously.
- While most prior work evaluates NeRFs on rendering quality, we propose a range of downstream tasks to evaluate them for Embodied AI applications.
- We show that AutoNeRF outperforms the well-known frontier exploration algorithm as well as learnt end-to-end counterparts, and we also study the impact of different RL reward functions on the downstream performance of the NeRF model.

Modular Policy

AutoNeRF: Training Implicit Scene Representations with Autonomous Agents

Pierre Marza¹, Laëtitia Matignon², Olivier Simonin¹, Dhruv Batra^{3, 5}, Christian Wolf⁴, Devendra Singh Chaplot³ INSA Lyon¹ UCBL² Meta Al³ Naver Labs Europe⁵ Georgia Tech⁵

Downstream tasks

Qualitative results – BEV Maps

Mesh reconstruction

Qualitative results – Rendering

Autonomous adaptation to a new scene

An autonomous agent will likely struggle with specificities of a new environment. A safe solution is **scene-specific adaptation**: AutoNeRF is used to explore a scene and build a 3D representation that is loaded into a simulator to finetune a policy of interest, e.g. a depth-only PointGoal agent.

Policy	Success	SPL
Finetuned on Gibson meshes (not comparable)	99.7	97.9
Pre-trained (no finetuning)	90.2	82.9
Finetuned on AutoNeRF meshes	92.9	86.7

Quantitative results

Rewards – Maximizing... Ours (cov.): Explored area Ours (obs.): Seen Obstacles Ours (sem.): Obs. in sem. map Ours (view.): Viewpoints from which objects are seen

External baselines

Frontier: Frontier-based expl. **E2E**: End-to-end RL agents (Ramakrishnan et al., An Exploration of Embodied Visual Exploration, IJCV 2021)

	Rendering					Map Estimation				
		RGB		Sem	antics	Oce	cupa	ncy	Seman	tics
Policy	PSNR	SSIM	LPIPS	Acc.	mIoU	Acc.	Prec.	Rec.	Acc Prec	. Rec.
Frontier	19.75	0.743	0.343	81.4	65.7	81.2	86.9	49.9	99.7 26.6	21.0
E2E (cov.)	20.94	0.750	0.332	80.1	63.9	77.1	86.2	50.4	99.7 22.1	16.1
E2E (cur.)	20.60	0.747	0.338	78.7	61.9	81.8	90.3	50.7	99.7 19.2	12.5
E2E (nov.)	23.36	0.801	0.268	84.6	71.4	83.1	88.7	61.3	99.7 25.5	18.3
E2E (rec.)	23.17	0.797	0.270	84.1	70.5	81.6	87.6	60.0	99.7 26.2	18.0
Ours (cov.)	24.89	0.837	0.218	90.2	81.2	86.8	89.1	74.7	99.8 35.1	27.1
Ours (sem.)	25.34	0.843	0.207	91.9	81.8	86.6	88.3	76.5	99.8 35.7	29.8
Ours (obs.)	25.56	0.846	0.203	91.8	83.2	86.4	89.4	76.5	99.8 36.2	29.8
Ours (view.)	25.17	0.842	0.211	91.3	82.0	88.1	90.9	77.0	99.8 37. 4	-30.2

		Plan	ning		Pose refinement			
	Point	tGoal	Obj	Goal	Conv.	Rot.	Trans.	
Policy	Succ.	SPL	Succ.	SPL	rate	error $(^{\circ})$	error (m)	
Frontier	22.4	21.4	9.6	9.1	7.2	0.383	0.00955	
E2E (cov.)	30.0	29.3	8.9	8.3	15.4	0.319	0.00775	
E2E (cur.)	29.8	29.2	8.5	8.0	12.5	0.325	0.00799	
E2E (nov.)	32.3	31.9	11.4	10.8	19.4	0.315	0.00774	
E2E (rec.)	32.8	32.6	10.5	10.0	19.3	0.292	0.00734	
Ours (cov.)	39.5	39.0	14.8	14.3	20.2	0.283	0.00734	
Ours (sem.)	37.7	37.4	16.0	15.4	23.0	0.319	0.00784	
Ours (obs.)	38.2	37.8	15.8	15.3	22.5	0.305	0.00765	
Ours (view.)	39.0	38.6	15.9	15.3	21.1	0.316	0.00769	