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Introduction

Problem
• Can we learn implicit representations of the structure and semantics of a

3D scene in real time, and train an agent with Reinforcement Learning
(RL) to use them to solve a visual navigation task?

• How to efficiently query an implicit representation at navigation time to
follow shorter paths to goals?

Considered task: Multi-Object Navigation (MultiON) [?]
• Requires an agent to navigate in a photo-realistic 3D environment from

RGB-D observations and reach a sequence of target objects (colored
cylinders) in a particular order.

• Two sub-tasks: exploration and semantic mapping.

Semantic Finder

• Predicts the position of an object
(colored circle) specified through an
input query (colored squares show
GT locations).

• Querying the location of an object is
a single forward pass.

• Prediction uncertainty (shaded area)
is also computed.

Occupancy and Exploration Implicit Representation

• Continuous representation of free
navigable space and obstacles.

• Predicts occupancy s as a
classification problem with three
classes {Obstacle (green),
Navigable (orange), Unexplored
(blue)}

Global Reader

• fo can be queried for a position, but
reading out information over a large
area this way requires multiple reads.

• Global reading mechanism
summarizing the known state of the
environment in one forward pass.

• r is a Tansformer model predicting
an embedding e directly from the
weights of fo (θo).

• A decoder is only used to train r.

Navigating with implicit representations
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Mapping means training! fs and fo maintain a compact and actionable representation of the observed scene, and as such need to be updated at each time
step from the current observation. Given their implicit nature and implementation as neural networks, updates are gradient based and done with SGD. The implicit
representations are therefore trained from scratch at each episode even after deployment.

Agent training The agent is trained with RL (Proximal Policy Optimization [?]). The inner training loops of the implicit representations are supervised (red
arrows) and occur at each time step in the forward pass, whereas the RL-based outer training loop of the agent occur after N acting steps (black arrows).

Quantitative results

Baselines
• NoMap [?]: Recurrent agent.
• ProjNMap [?]: Recurrent agent with a 2D

top-down map of CNN-extracted features.
• OracleMap/OracleEgoMap [?]: ProjNMap

with oracle map (goal locations, ✓ in ORC).
• ProjNMap + AUX [?]: Augmenting the

training supervision of ProjNMap with
mapping-related auxiliary losses (✓ in AUX).

Training details
• ρ: pre-training of input encoders from [?] (w/ or w/o pre-train).
• α: finetuning of input encoders with RL.
• w/ curriculum: 3-steps agent RL training to reduce compute

requirements: 0−30M frames with no impl. repr., 30M−50M frames
with fs only and 50M−70M frames with fs, fo and r.

• γ: both implicit representations are accessible to the agent since the
beginning of RL training (w/o curriculum).

Metrics
• Success: Percentage of successful

episodes (all targets found in order).
• Progress: Percentage of found targets.
• SPL: Success and path efficiency.
• PPL: Progress and path efficiency.

Agent ρ α γ Success Progress SPL PPL AUX ORC
(a) OracleMap† [?] − ✓ 50.4± 3.5 60.5± 3.1 40.7± 2.2 48.8± 1.9 − ✓
(b) OracleEgoMap† [?] − ✓ 32.8± 5.2 47.7± 5.2 26.1± 4.5 37.6± 4.7 − ✓
(c) NoMap† [?] − ✓ 16.7± 3.6 33.7± 3.3 13.1± 2.4 26.0± 1.7 − −
(d) ProjNMap† [?] − ✓ 25.9± 1.1 43.4± 1.0 18.3± 0.6 30.9± 0.7 − −
(e) NoMap ✓ − 42.3± 1.5 56.7± 0.9 28.1± 1.0 37.8± 1.8 − −
(f) ProjNMap [?] ✓ − 39.7± 2.3 55.4± 1.4 28.7± 1.1 40.1± 1.9 − −
(g) Implicit (Ours) w/ curriculum w/ pre-train ✓ − − 46.7± 3.0 60.1± 3.1 35.1± 1.4 44.8± 1.0 − −
(h) ProjNMap + AUX [?] N/A ✓ N/A 57.7 ± 3.7 70.2 ± 2.7 37.5 ± 2.0 45.9 ± 1.9 ✓ −
(i) Implicit (Ours) w/o curriculum w/ pre-train + AUX ✓ ✓ ✓ 58.3± 0.8 69.4± 1.1 43.8± 1.0 52.1± 1.6 ✓ −
(j) Implicit (Ours) w/o curriculum w/o pre-train − ✓ ✓ 54.8± 3.6 68.0± 3.4 41.7± 1.9 51.3± 1.6 − −
(k) Implicit (Ours) w/o curriculum w/o pre-train + AUX − ✓ ✓ 57.9± 2.0 69.5± 0.6 43.3± 2.2 51.9± 3.7 ✓ −

Training of the Global Reader

Forward	pass

Training	supervision1

2

Convolutional autoencoder on absolute maps

Global reader on absolute maps

Weights	init

3 Global reader on egocentric maps

p

Global	occupancy	reader	

Convolutional	decoder	

Convolutional	encoder	

Linear	layers	

Frozen	weights	

Absolute	point	coordinates	

Egocentric	point	coordinates

Implicit	representation	(occupancy)	

p Agent	pose	

ℒ

ℒ

ℒ

• Trained from a dataset of pairs: MLP weights θo parametrizing an implicit
representation fo and an egocentric map obtained by discretizing fo.

• Trained to decode the egocentric map from the set of weights as input.
• 3-steps training works better than single-step training from scratch.
• After this pre-training, r is not adapted during the RL training.

Lifelong learning

• Evaluating the capacity of fs to hold
the learned information while being
continuously trained.

• The mean error in distance for the
predicted position of seen targets
quickly decreases and stabilizes.

Capacity of the semantic representation

• Study performed independently of the MultiON benchmark: synthetic
dataset to evaluate the capacity of fs to store large numbers of objects.

• fs trained from dummy queries: (a) one-hot queries with same dimension
as nb. objects; (b) random query with dimension 9; (c) random query with
same dimension as nb. objects. Mean distance prediction error is reported.
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