

Teaching Agents how to Map: Spatial Reasoning for Multi-Object Navigation

Laetitia Matignon

Pierre Marza pierre.marza@insa-lyon.fr

Olivier Simonin

Christian Wolf

1

Multi-Object Navigation

[1] Wani et al. MultiON: Benchmarking Semantic Map Memory using Multi-Object Navigation, NeurIPS 2020 [2] Chang et al. Matterport 3D: Learning from RGB-D Data in Indoor Environments, 3DV 2017

Important abilities

- Building a useful representation of the environment
- Taking advantage of such representation to plan and navigate efficiently

Multi-Object Navigation

Why is it interesting to benchmark mapping capabilities ?

- Sequential task
 - Remembering previously encountered objects
 - Mapping the environment
- External objects as objectives
 - Agent can't rely on knowledge about indoor layouts
 - Focus on memory

[1] Wani et al. MultiON: Benchmarking Semantic Map Memory using Multi-Object Navigation, NeurIPS 2020 [2] Chang et al. Matterport 3D: Learning from RGB-D Data in Indoor Environments, 3DV 2017

[1] Wani et al. MultiON: Benchmarking Semantic Map Memory using Multi-Object Navigation, NeurIPS 2020

[1] Wani et al. MultiON: Benchmarking Semantic Map Memory using Multi-Object Navigation, NeurIPS 2020

NoMap: Recurrent agent

[1] Wani et al. MultiON: Benchmarking Semantic Map Memory using Multi-Object Navigation, NeurIPS 2020 [3] Henriques et al. Mapnet: An allocentric spatial memory for mapping environments, CVPR 2018 [4] Beeching et al. EgoMap: Projective mapping and structured egocentric memory for Deep RL, ECML-PKDD 2020

[1] Wani et al. MultiON: Benchmarking Semantic Map Memory using Multi-Object Navigation, NeurIPS 2020 [3] Henriques et al. Mapnet: An allocentric spatial memory for mapping environments, CVPR 2018 [4] Beeching et al. EgoMap: Projective mapping and structured egocentric memory for Deep RL, ECML-PKDD 2020

[1] Wani et al. MultiON: Benchmarking Semantic Map Memory using Multi-Object Navigation, NeurIPS 2020 [3] Henriques et al. Mapnet: An allocentric spatial memory for mapping environments, CVPR 2018 [4] Beeching et al. EgoMap: Projective mapping and structured egocentric memory for Deep RL, ECML-PKDD 2020

Trained with Proximal Policy Optimization (PPO) [5]

[1] Wani et al. MultiON: Benchmarking Semantic Map Memory using Multi-Object Navigation, NeurIPS 2020 [5] Schulman et al. Proximal policy optimization algorithms, arXiv preprint, 2017

$R_t = 1_{\text{[reached-goal]}} \cdot R_{\text{goal}} + R_{\text{closer}} + R_{\text{time-penalty}}$

Inspiration

Behavioral Studies of Human Spatial Navigation

- Sense of direction

- scene- and orientation- dependent pointing (SOP)

- Judgment of relative distance

- Compare the relative distance to several goals

[6] Ekstrom et al. A critical review of the allocentric spatial representation and its neural underpinnings: Toward a network-based perspective, Frontiers in Human Neuroscience 2014

Reproduced from [6]

Auxiliary tasks

Direction prediction

Classification problem Angles in the range [0, 360] divided into bins

$$\mathscr{L}_{\phi} = \frac{1}{\left| \mathscr{U}_{k} \right| T} \sum_{\tau \in \mathscr{U}_{k}} \sum_{t=0}^{T-1} \left[-1_{t} \sum_{c=1}^{K} \phi_{t,c}^{*} \log p(\hat{\phi}_{t,c}) \right]$$

Only target objects that have already been seen

Distance prediction

- Classification problem
- Euclidian distances on the grid egocentric map divided into bins

$$\mathscr{L}_{d} = \frac{1}{\left|\mathscr{U}_{k}\right| T} \sum_{\tau \in \mathscr{U}_{k}} \sum_{t=0}^{T-1} \left[-1_{t} \sum_{c=1}^{L} d_{t,c}^{*} \log p(\hat{d}_{t,c}) \right]$$

Auxiliary tasks

[1] Wani et al. MultiON: Benchmarking Semantic Map Memory using Multi-Object Navigation, NeurIPS 2020
[2] Chang et al. Matterport 3D: Learning from RGB-D Data in Indoor Environments, 3DV 2017
[3] Henriques et al. Mapnet: An allocentric spatial memory for mapping environments, CVPR 2018
[4] Beeching et al. EgoMap: Projective mapping and structured egocentric memory for Deep RL, ECML-PKDD 2020

Actions

- FORWARD: moves foward 0.25m
- LEFT: turns left 30°
- **RIGHT**: turns right 30°
- FOUND: signals the agents thinks it has reached the target

Metrics

- Success: Percentage of successful episodes
- **Progress**: Percentage of objects found in an episode
- SPL (Success weighted by Path Length): $SPL = s \cdot d / \max(p, d)$
 - *s* is the success binary indicator
 - p is the distance travelled by the agent
 - *d* is the total shortest path
- **PPL** (Progress weighted by Path Length): $PPL = \bar{s} \cdot \bar{d} / \max(p, \bar{d})$
 - \overline{s} is the progress
 - \overline{d} is the shortest path to reach all found objects

Ablation Study - Impact of each loss on validation performance

Agent	Dir.	Dist.	Success	Progress	SPL	PPL	Comparable
OracleMap			51.4 ± 2.0	61.2 ± 0.8	41.3 ± 1.5	49.0 ± 0.7	
OracleEgoMap	—	—	37.1 ± 1.0	51.8 ± 0.9	$29.7{\pm0.7}$	41.2 ± 1.1	
			27.3 ± 3.5	44.8 ± 2.6	19.5 ± 0.9	32.5 ± 0.3	\checkmark
ProjNeuralMap	\checkmark	—					\checkmark
	\checkmark	\checkmark					\checkmark

Ablation Study - Impact of each loss on validation performance

Agent	Dir.	Dist.	Success	Progress	SPL	PPL	Comparable
OracleMap			51.4 ± 2.0	61.2 ± 0.8	41.3 ± 1.5	49.0 ± 0.7	
OracleEgoMap		—	37.1 ± 1.0	51.8 ± 0.9	29.7 ± 0.7	41.2 ± 1.1	
		—	27.3 ± 3.5	$44.8{\pm}~2.6$	19.5 ± 0.9	32.5 ± 0.3	\checkmark
DroiNourolMon	\checkmark	—	43.0 ± 5.7	58.9 ± 4.6	30.7 ± 4.9	42.1 ± 4.0	\checkmark
riojinculativiap	\checkmark	\checkmark					\checkmark

Ablation Study - Impact of each loss on validation performance

Agent	Dir.	Dist.	Success	Progress	SPL	PPL	Comparable
OracleMap			51.4 ± 2.0	61.2 ± 0.8	41.3 ± 1.5	49.0 ± 0.7	
OracleEgoMap	—	—	37.1 ± 1.0	51.8 ± 0.9	29.7 ± 0.7	41.2 ± 1.1	
			27.3 ± 3.5	44.8 ± 2.6	19.5 ± 0.9	32.5 ± 0.3	\checkmark
DroiNourolMon	\checkmark	—	43.0 ± 5.7	58.9 ± 4.6	30.7 ± 4.9	42.1 ± 4.0	\checkmark
riojincuranviap	\checkmark	\checkmark	$\textbf{54.2} \pm \textbf{3.5}$	$\textbf{67.4} \pm \textbf{2.3}$	$\textbf{37.8} \pm \textbf{0.8}$	$\textbf{47.4} \pm \textbf{0.4}$	\checkmark

Both auxiliary tasks have a positive impact and are complementary

Test performance - Do the auxiliary tasks improve the downstream objective ?

Agent	Aux. Sup.	Success	Progress	SPL	PPL	Comparable
OracleMap		41.0 ± 1.8	50.3 ± 0.9	32.2 ± 0.9	39.4 ± 0.4	
OracleEgoMap		25.8 ± 1.1	41.0 ± 1.0	19.7 ± 0.7	30.7 ± 1.3	
ProjNeuralMap		18.0 ± 1.3	34.4 ± 1.7	12.3 ± 0.4	24.1 ± 0.1	\checkmark
	\checkmark	$\textbf{38.0} \pm \textbf{2.4}$	$\textbf{52.6} \pm \textbf{2.0}$	$\textbf{25.7} \pm \textbf{0.2}$	$\textbf{36.2} \pm \textbf{1.1}$	\checkmark
		7.4 ± 0.2	21.7 ± 0.2	6.0 ± 0.1	17.3 ± 0.4	\checkmark
inoiviap	\checkmark					\checkmark

Test performance - Can an unstructured recurrent agent learn to map?

Agent	Aux. Sup.	Success	Progress	SPL	PPL	Comparable
OracleMap		41.0 ± 1.8	50.3 ± 0.9	32.2 ± 0.9	39.4 ± 0.4	
OracleEgoMap		25.8 ± 1.1	41.0 ± 1.0	19.7 ± 0.7	30.7 ± 1.3	
ProjNeuralMap		18.0 ± 1.3	34.4 ± 1.7	12.3 ± 0.4	24.1 ± 0.1	\checkmark
	\checkmark	$\textbf{38.0} \pm \textbf{2.4}$	$\textbf{52.6} \pm \textbf{2.0}$	$\textbf{25.7} \pm \textbf{0.2}$	$\textbf{36.2} \pm \textbf{1.1}$	\checkmark
NoMap		7.4 ± 0.2	21.7 ± 0.2	6.0 ± 0.1	17.3 ± 0.4	\checkmark
	\checkmark	$22.4{\pm}~2.0$	38.2 ± 2.0	15.2 ± 2.2	26.4 ± 2.3	\checkmark

Winning entry of the MultiON Challenge, CVPR 2021 Embodied AI Workshop

Agent/Method	— Test Challenge —				— Test Standard —			
	Success	Progress	SPL	PPL	Success	Progress	SPL	PPL
Ours (Auxiliary losses)	55	67	35	44	57	70	36	45
Team 2	52	64	32	38	62	71	34	39
Team 3	41	57	26	36	43	57	27	36
ProjNeuralMap (Challenge baseline)				—	12	29	6	16
NoMap (Challenge baseline)			—		5	19	3	13

CVPR 2021 Embodied Al Workshop: https://embodied-ai.org/

MultiON Challenge: <u>http://multion-challenge.cs.sfu.ca/</u>

MultiON Challenge video : <u>https://www.youtube.com/watch?v=ghX5UDWD1HU</u>

Video presenting our method : <u>https://www.youtube.com/watch?v=boDaAORoKho</u>

Teaching Agents how to Map: Spatial Reasoning for Multi-Object Navigation

Laetitia Matignon

Pierre Marza pierre.marza@insa-lyon.fr

Olivier Simonin

Christian Wolf