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Multi-Object Navigation 

Target objects Matterport 3D [2] Important abilities
-Building a useful representation of the 

environment

-Taking advantage of such representation 

to plan and navigate efficiently

[1] Wani et al. MultiON: Benchmarking Semantic Map Memory using Multi-Object Navigation, NeurIPS 2020

[2] Chang et al. Matterport 3D: Learning from RGB-D Data in Indoor Environments, 3DV 2017
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Multi-Object Navigation 

3

Why is it interesting to benchmark mapping capabilities ?


- Sequential task

- Remembering previously encountered objects

- Mapping the environment


- External objects as objectives

- Agent can’t rely on knowledge about indoor layouts

- Focus on memory

[1] Wani et al. MultiON: Benchmarking Semantic Map Memory using Multi-Object Navigation, NeurIPS 2020

[2] Chang et al. Matterport 3D: Learning from RGB-D Data in Indoor Environments, 3DV 2017
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Baseline Architectures 

[1] Wani et al. MultiON: Benchmarking Semantic Map Memory using Multi-Object Navigation, NeurIPS 2020
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Baseline Architectures 

[1] Wani et al. MultiON: Benchmarking Semantic Map Memory using Multi-Object Navigation, NeurIPS 2020
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Baseline Architectures 

[1] Wani et al. MultiON: Benchmarking Semantic Map Memory using Multi-Object Navigation, NeurIPS 2020

[3] Henriques et al.  Mapnet:  An allocentric spatial memory for mapping environments, CVPR 2018

[4] Beeching et al. EgoMap: Projective mapping and structured egocentric memory for Deep RL, ECML-PKDD 2020
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Baseline Architectures 

[1] Wani et al. MultiON: Benchmarking Semantic Map Memory using Multi-Object Navigation, NeurIPS 2020

[3] Henriques et al.  Mapnet:  An allocentric spatial memory for mapping environments, CVPR 2018

[4] Beeching et al. EgoMap: Projective mapping and structured egocentric memory for Deep RL, ECML-PKDD 2020
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Baseline Architectures 

[1] Wani et al. MultiON: Benchmarking Semantic Map Memory using Multi-Object Navigation, NeurIPS 2020

[3] Henriques et al.  Mapnet:  An allocentric spatial memory for mapping environments, CVPR 2018

[4] Beeching et al. EgoMap: Projective mapping and structured egocentric memory for Deep RL, ECML-PKDD 2020
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Baseline Architectures 

[1] Wani et al. MultiON: Benchmarking Semantic Map Memory using Multi-Object Navigation, NeurIPS 2020

[5] Schulman et al. Proximal policy optimization algorithms, arXiv preprint, 2017
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Rt = 1[reached-goal ] ⋅ Rgoal  + Rcloser  + Rtime-penalty 

Trained with Proximal Policy Optimization (PPO) [5]
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Inspiration 

[6] Ekstrom et al. A critical review of the allocentric spatial representation and its neural underpinnings: Toward a network-based perspective, Frontiers in Human Neuroscience

2014 
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Behavioral Studies of Human Spatial Navigation


- Sense of direction 
- scene- and orientation- dependent pointing (SOP)


- Judgment of relative distance 
- Compare the relative distance to several goals

Reproduced from [6]
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Auxiliary tasks 

11

Direction prediction

-Classification problem

-Angles in the range [0, 360] 

divided into bins

Distance prediction

-Classification problem 
-Euclidian distances on the grid 

egocentric map divided into bins

i

j

ϕt

Only target objects that have already been seen
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Auxiliary tasks 

[1] Wani et al. MultiON: Benchmarking Semantic Map Memory using Multi-Object Navigation, NeurIPS 2020

[2] Chang et al. Matterport 3D: Learning from RGB-D Data in Indoor Environments, 3DV 2017

[3] Henriques et al.  Mapnet:  An allocentric spatial memory for mapping environments, CVPR 2018

[4] Beeching et al. EgoMap: Projective mapping and structured egocentric memory for Deep RL, ECML-PKDD 2020
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Experimental results 
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- Success: Percentage of successful episodes 
- Progress: Percentage of objects found in an episode


- SPL (Success weighted by Path Length):

-  is the success binary indicator

-  is the distance travelled by the agent

-  is the total shortest path


- PPL (Progress weighted by Path Length): 

-  is the progress

-  is the shortest path to reach all found objects

s
p
d

s̄
d̄

Metrics

Actions

- FORWARD: moves foward 0.25m

- LEFT: turns left 30°

- RIGHT: turns right 30°

- FOUND: signals the agents thinks it has reached the target

SPL = s ⋅ d/ max(p, d)

PPL = s̄ ⋅ d̄/ max(p, d̄)
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Experimental results 

14

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

AUTHOR(S): TEACHING AGENTS HOW TO MAP 7

Agent Dir. Dist. Success Progress SPL PPL Comparable

OracleMap � � 51.4± 2.0 61.2± 0.8 41.3± 1.5 49.0± 0.7 �
OracleEgoMap � � 37.1± 1.0 51.8± 0.9 29.7± 0.7 41.2± 1.1 �

ProjNeuralMap

� � 27.3± 3.5 44.8± 2.6 19.5± 0.9 32.5± 0.3 X
X � 43.0± 5.7 58.9± 4.6 30.7± 4.9 42.1± 4.0 X
X X 54.2 ± 3.5 67.4 ± 2.3 37.8 ± 0.8 47.4 ± 0.4 X

Table 1: Impact of different auxiliary tasks (validation performance). Direction prediction
significantly improves the performance of ProjNeuralMap baseline, adding distance predic-
tion further increases the downstream performance by a large margin, matching the perfor-
mance of (incomparable!) OracleEgoMap. Both losses are effective and complementary.

Agent Aux. Sup. Success Progress SPL PPL Comparable

OracleMap � 41.0± 1.8 50.3± 0.9 32.2± 0.9 39.4± 0.4 �
OracleEgoMap � 25.8± 1.1 41.0± 1.0 19.7± 0.7 30.7± 1.3 �

ProjNeuralMap � 18.0± 1.3 34.4± 1.7 12.3± 0.4 24.1± 0.1 X
X 38.0 ± 2.4 52.6 ± 2.0 25.7 ± 0.2 36.2 ± 1.1 X

NoMap � 7.4± 0.2 21.7± 0.2 6.0± 0.1 17.3± 0.4 X
X 22.4± 2.0 38.2± 2.0 15.2± 2.2 26.4± 2.3 X

Table 2: Consistency over multiple models (test set). ProjNeuralMap performs significantly
better when trained with our additional losses, even outperforming OracleEgoMap. The
recurrent-only NoMap agent does not have any spatial inductive bias. When augmented with
our supervision it outperforms ProjNeuralMap, also closing the gap with OracleEgoMap.
This provides evidence that spatial inductive bias provides an edge, but that an unstructured
agent can decrease the gap through supervision.

4 Experimental Results

We focus on the 3-ON version of the Multi-ON task, where the agent deals with sequences
of 3 objects. The time limit is fixed to 2500 environment steps, and there are 8 object classes.
The agent receives a (256⇥256⇥4) RGB-D observation and the one-in-K encoded class of
the current target object within the sequence. The discrete action space is composed of four
actions: move forward 0.25m, turn left 30�, turn right 30�, and found, which signals that the
agent considers the current target object to be reached. As the aim of the task is to focus on
evaluating the importance of mapping, a perfect localization of the agent was assumed as in
the protocol proposed in [42].

Dataset and metrics — we used the standard train/val/test split over scenes from the
Matterport [8] dataset. 1000 episodes are sampled from the val and test splits for model
validation and testing, respectively. We consider standard metrics of the field as given in [42]:

• Success: percentage of successful episodes (the agent reaches all the three objects in
the right order in the time limit).

• Progress: percentage of objects successfully found in an episode.
• SPL: Success weighted by Path Length. This extends the original SPL metrics from

[1] to the sequential multi-object case.
• PPL: Progress weighted By Path Length.

Note that for an object to be considered found, the agent must take the found action while
being within 1.5m of the current goal. The episode ends immediately if the agent calls found

Ablation Study - Impact of each loss on validation performance
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Experimental results 
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Agent Dir. Dist. Success Progress SPL PPL Comparable

OracleMap � � 51.4± 2.0 61.2± 0.8 41.3± 1.5 49.0± 0.7 �
OracleEgoMap � � 37.1± 1.0 51.8± 0.9 29.7± 0.7 41.2± 1.1 �

ProjNeuralMap

� � 27.3± 3.5 44.8± 2.6 19.5± 0.9 32.5± 0.3 X
X � 43.0± 5.7 58.9± 4.6 30.7± 4.9 42.1± 4.0 X
X X 54.2 ± 3.5 67.4 ± 2.3 37.8 ± 0.8 47.4 ± 0.4 X

Table 1: Impact of different auxiliary tasks (validation performance). Direction prediction
significantly improves the performance of ProjNeuralMap baseline, adding distance predic-
tion further increases the downstream performance by a large margin, matching the perfor-
mance of (incomparable!) OracleEgoMap. Both losses are effective and complementary.

Agent Aux. Sup. Success Progress SPL PPL Comparable

OracleMap � 41.0± 1.8 50.3± 0.9 32.2± 0.9 39.4± 0.4 �
OracleEgoMap � 25.8± 1.1 41.0± 1.0 19.7± 0.7 30.7± 1.3 �

ProjNeuralMap � 18.0± 1.3 34.4± 1.7 12.3± 0.4 24.1± 0.1 X
X 38.0 ± 2.4 52.6 ± 2.0 25.7 ± 0.2 36.2 ± 1.1 X

NoMap � 7.4± 0.2 21.7± 0.2 6.0± 0.1 17.3± 0.4 X
X 22.4± 2.0 38.2± 2.0 15.2± 2.2 26.4± 2.3 X

Table 2: Consistency over multiple models (test set). ProjNeuralMap performs significantly
better when trained with our additional losses, even outperforming OracleEgoMap. The
recurrent-only NoMap agent does not have any spatial inductive bias. When augmented with
our supervision it outperforms ProjNeuralMap, also closing the gap with OracleEgoMap.
This provides evidence that spatial inductive bias provides an edge, but that an unstructured
agent can decrease the gap through supervision.

4 Experimental Results

We focus on the 3-ON version of the Multi-ON task, where the agent deals with sequences
of 3 objects. The time limit is fixed to 2500 environment steps, and there are 8 object classes.
The agent receives a (256⇥256⇥4) RGB-D observation and the one-in-K encoded class of
the current target object within the sequence. The discrete action space is composed of four
actions: move forward 0.25m, turn left 30�, turn right 30�, and found, which signals that the
agent considers the current target object to be reached. As the aim of the task is to focus on
evaluating the importance of mapping, a perfect localization of the agent was assumed as in
the protocol proposed in [42].

Dataset and metrics — we used the standard train/val/test split over scenes from the
Matterport [8] dataset. 1000 episodes are sampled from the val and test splits for model
validation and testing, respectively. We consider standard metrics of the field as given in [42]:

• Success: percentage of successful episodes (the agent reaches all the three objects in
the right order in the time limit).

• Progress: percentage of objects successfully found in an episode.
• SPL: Success weighted by Path Length. This extends the original SPL metrics from

[1] to the sequential multi-object case.
• PPL: Progress weighted By Path Length.

Note that for an object to be considered found, the agent must take the found action while
being within 1.5m of the current goal. The episode ends immediately if the agent calls found

Ablation Study - Impact of each loss on validation performance
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Experimental results 
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AUTHOR(S): TEACHING AGENTS HOW TO MAP 7

Agent Dir. Dist. Success Progress SPL PPL Comparable

OracleMap � � 51.4± 2.0 61.2± 0.8 41.3± 1.5 49.0± 0.7 �
OracleEgoMap � � 37.1± 1.0 51.8± 0.9 29.7± 0.7 41.2± 1.1 �

ProjNeuralMap

� � 27.3± 3.5 44.8± 2.6 19.5± 0.9 32.5± 0.3 X
X � 43.0± 5.7 58.9± 4.6 30.7± 4.9 42.1± 4.0 X
X X 54.2 ± 3.5 67.4 ± 2.3 37.8 ± 0.8 47.4 ± 0.4 X

Table 1: Impact of different auxiliary tasks (validation performance). Direction prediction
significantly improves the performance of ProjNeuralMap baseline, adding distance predic-
tion further increases the downstream performance by a large margin, matching the perfor-
mance of (incomparable!) OracleEgoMap. Both losses are effective and complementary.

Agent Aux. Sup. Success Progress SPL PPL Comparable

OracleMap � 41.0± 1.8 50.3± 0.9 32.2± 0.9 39.4± 0.4 �
OracleEgoMap � 25.8± 1.1 41.0± 1.0 19.7± 0.7 30.7± 1.3 �

ProjNeuralMap � 18.0± 1.3 34.4± 1.7 12.3± 0.4 24.1± 0.1 X
X 38.0 ± 2.4 52.6 ± 2.0 25.7 ± 0.2 36.2 ± 1.1 X

NoMap � 7.4± 0.2 21.7± 0.2 6.0± 0.1 17.3± 0.4 X
X 22.4± 2.0 38.2± 2.0 15.2± 2.2 26.4± 2.3 X

Table 2: Consistency over multiple models (test set). ProjNeuralMap performs significantly
better when trained with our additional losses, even outperforming OracleEgoMap. The
recurrent-only NoMap agent does not have any spatial inductive bias. When augmented with
our supervision it outperforms ProjNeuralMap, also closing the gap with OracleEgoMap.
This provides evidence that spatial inductive bias provides an edge, but that an unstructured
agent can decrease the gap through supervision.

4 Experimental Results

We focus on the 3-ON version of the Multi-ON task, where the agent deals with sequences
of 3 objects. The time limit is fixed to 2500 environment steps, and there are 8 object classes.
The agent receives a (256⇥256⇥4) RGB-D observation and the one-in-K encoded class of
the current target object within the sequence. The discrete action space is composed of four
actions: move forward 0.25m, turn left 30�, turn right 30�, and found, which signals that the
agent considers the current target object to be reached. As the aim of the task is to focus on
evaluating the importance of mapping, a perfect localization of the agent was assumed as in
the protocol proposed in [42].

Dataset and metrics — we used the standard train/val/test split over scenes from the
Matterport [8] dataset. 1000 episodes are sampled from the val and test splits for model
validation and testing, respectively. We consider standard metrics of the field as given in [42]:

• Success: percentage of successful episodes (the agent reaches all the three objects in
the right order in the time limit).

• Progress: percentage of objects successfully found in an episode.
• SPL: Success weighted by Path Length. This extends the original SPL metrics from

[1] to the sequential multi-object case.
• PPL: Progress weighted By Path Length.

Note that for an object to be considered found, the agent must take the found action while
being within 1.5m of the current goal. The episode ends immediately if the agent calls found

Both auxiliary tasks have a positive impact and are complementary

Ablation Study - Impact of each loss on validation performance
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Agent Dir. Dist. Success Progress SPL PPL Comparable

OracleMap � � 51.4± 2.0 61.2± 0.8 41.3± 1.5 49.0± 0.7 �
OracleEgoMap � � 37.1± 1.0 51.8± 0.9 29.7± 0.7 41.2± 1.1 �

ProjNeuralMap

� � 27.3± 3.5 44.8± 2.6 19.5± 0.9 32.5± 0.3 X
X � 43.0± 5.7 58.9± 4.6 30.7± 4.9 42.1± 4.0 X
X X 54.2 ± 3.5 67.4 ± 2.3 37.8 ± 0.8 47.4 ± 0.4 X

Table 1: Impact of different auxiliary tasks (validation performance). Direction prediction
significantly improves the performance of ProjNeuralMap baseline, adding distance predic-
tion further increases the downstream performance by a large margin, matching the perfor-
mance of (incomparable!) OracleEgoMap. Both losses are effective and complementary.

Agent Aux. Sup. Success Progress SPL PPL Comparable

OracleMap � 41.0± 1.8 50.3± 0.9 32.2± 0.9 39.4± 0.4 �
OracleEgoMap � 25.8± 1.1 41.0± 1.0 19.7± 0.7 30.7± 1.3 �

ProjNeuralMap � 18.0± 1.3 34.4± 1.7 12.3± 0.4 24.1± 0.1 X
X 38.0 ± 2.4 52.6 ± 2.0 25.7 ± 0.2 36.2 ± 1.1 X

NoMap � 7.4± 0.2 21.7± 0.2 6.0± 0.1 17.3± 0.4 X
X 22.4± 2.0 38.2± 2.0 15.2± 2.2 26.4± 2.3 X

Table 2: Consistency over multiple models (test set). ProjNeuralMap performs significantly
better when trained with our additional losses, even outperforming OracleEgoMap. The
recurrent-only NoMap agent does not have any spatial inductive bias. When augmented with
our supervision it outperforms ProjNeuralMap, also closing the gap with OracleEgoMap.
This provides evidence that spatial inductive bias provides an edge, but that an unstructured
agent can decrease the gap through supervision.

4 Experimental Results

We focus on the 3-ON version of the Multi-ON task, where the agent deals with sequences
of 3 objects. The time limit is fixed to 2500 environment steps, and there are 8 object classes.
The agent receives a (256⇥256⇥4) RGB-D observation and the one-in-K encoded class of
the current target object within the sequence. The discrete action space is composed of four
actions: move forward 0.25m, turn left 30�, turn right 30�, and found, which signals that the
agent considers the current target object to be reached. As the aim of the task is to focus on
evaluating the importance of mapping, a perfect localization of the agent was assumed as in
the protocol proposed in [42].

Dataset and metrics — we used the standard train/val/test split over scenes from the
Matterport [8] dataset. 1000 episodes are sampled from the val and test splits for model
validation and testing, respectively. We consider standard metrics of the field as given in [42]:

• Success: percentage of successful episodes (the agent reaches all the three objects in
the right order in the time limit).

• Progress: percentage of objects successfully found in an episode.
• SPL: Success weighted by Path Length. This extends the original SPL metrics from

[1] to the sequential multi-object case.
• PPL: Progress weighted By Path Length.

Note that for an object to be considered found, the agent must take the found action while
being within 1.5m of the current goal. The episode ends immediately if the agent calls found

Test performance - Do the auxiliary tasks improve the downstream objective ? 
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Agent Dir. Dist. Success Progress SPL PPL Comparable

OracleMap � � 51.4± 2.0 61.2± 0.8 41.3± 1.5 49.0± 0.7 �
OracleEgoMap � � 37.1± 1.0 51.8± 0.9 29.7± 0.7 41.2± 1.1 �

ProjNeuralMap

� � 27.3± 3.5 44.8± 2.6 19.5± 0.9 32.5± 0.3 X
X � 43.0± 5.7 58.9± 4.6 30.7± 4.9 42.1± 4.0 X
X X 54.2 ± 3.5 67.4 ± 2.3 37.8 ± 0.8 47.4 ± 0.4 X

Table 1: Impact of different auxiliary tasks (validation performance). Direction prediction
significantly improves the performance of ProjNeuralMap baseline, adding distance predic-
tion further increases the downstream performance by a large margin, matching the perfor-
mance of (incomparable!) OracleEgoMap. Both losses are effective and complementary.

Agent Aux. Sup. Success Progress SPL PPL Comparable

OracleMap � 41.0± 1.8 50.3± 0.9 32.2± 0.9 39.4± 0.4 �
OracleEgoMap � 25.8± 1.1 41.0± 1.0 19.7± 0.7 30.7± 1.3 �

ProjNeuralMap � 18.0± 1.3 34.4± 1.7 12.3± 0.4 24.1± 0.1 X
X 38.0 ± 2.4 52.6 ± 2.0 25.7 ± 0.2 36.2 ± 1.1 X

NoMap � 7.4± 0.2 21.7± 0.2 6.0± 0.1 17.3± 0.4 X
X 22.4± 2.0 38.2± 2.0 15.2± 2.2 26.4± 2.3 X

Table 2: Consistency over multiple models (test set). ProjNeuralMap performs significantly
better when trained with our additional losses, even outperforming OracleEgoMap. The
recurrent-only NoMap agent does not have any spatial inductive bias. When augmented with
our supervision it outperforms ProjNeuralMap, also closing the gap with OracleEgoMap.
This provides evidence that spatial inductive bias provides an edge, but that an unstructured
agent can decrease the gap through supervision.

4 Experimental Results

We focus on the 3-ON version of the Multi-ON task, where the agent deals with sequences
of 3 objects. The time limit is fixed to 2500 environment steps, and there are 8 object classes.
The agent receives a (256⇥256⇥4) RGB-D observation and the one-in-K encoded class of
the current target object within the sequence. The discrete action space is composed of four
actions: move forward 0.25m, turn left 30�, turn right 30�, and found, which signals that the
agent considers the current target object to be reached. As the aim of the task is to focus on
evaluating the importance of mapping, a perfect localization of the agent was assumed as in
the protocol proposed in [42].

Dataset and metrics — we used the standard train/val/test split over scenes from the
Matterport [8] dataset. 1000 episodes are sampled from the val and test splits for model
validation and testing, respectively. We consider standard metrics of the field as given in [42]:

• Success: percentage of successful episodes (the agent reaches all the three objects in
the right order in the time limit).

• Progress: percentage of objects successfully found in an episode.
• SPL: Success weighted by Path Length. This extends the original SPL metrics from

[1] to the sequential multi-object case.
• PPL: Progress weighted By Path Length.

Note that for an object to be considered found, the agent must take the found action while
being within 1.5m of the current goal. The episode ends immediately if the agent calls found

Test performance - Can an unstructured recurrent agent learn to map ? 
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MultiON Challenge: http://multion-challenge.cs.sfu.ca/ 

MultiON Challenge video : https://www.youtube.com/watch?v=ghX5UDWD1HU 

Video presenting our method : https://www.youtube.com/watch?v=boDaAORoKho

Winning entry of the MultiON Challenge, CVPR 2021 Embodied AI Workshop

CVPR 2021 Embodied AI Workshop: https://embodied-ai.org/ 
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8 AUTHOR(S): TEACHING AGENTS HOW TO MAP

Agent/Method — Test Challenge — — Test Standard —
Success Progress SPL PPL Success Progress SPL PPL

Ours (Auxiliary losses) 55 67 35 44 57 70 36 45
Team 2 52 64 32 38 62 71 34 39
Team 3 41 57 26 36 43 57 27 36

ProjNeuralMap (Challenge baseline) � � � � 12 29 6 16
NoMap (Challenge baseline) � � � � 5 19 3 13

Table 3: Our method corresponds to the winning entry in the CVPR 2021 Multi-ON Chal-
lenge Leaderboard: Test Challenge are the official challenge results. Test Standard contains
pre- and post-challenge results. The official challenge ranking is done with PPL, which
evaluates correct mapping (quicker and more direct finding of objects).

in an incorrect location. For more details, we refer to [42].
Implementation details — training and evaluation hyper-parameters, as well as archi-

tecture details have been taken from [42]. All reported quantitative results are obtained after
2 training runs for each model, during 70M steps (increased from 40M in [42]). Ground-
truth direction and distance measures are respectively split into K = 12 and L = 36 classes.
Indeed, angle bins span 30�, and distance bins span a unit distance on the egocentric map,
that is 50x50 (the maximum distance between center and a grid corner is thus 35). Training
weights lf and ld are both fixed to 0.25.

Do the auxiliary tasks improve the downstream objective? — in Table 1, we study the
impact of both auxiliary tasks on the 3-ON benchmark when added to the training objective
of ProjNeuralMap, and their complementarity. Direction prediction significantly improves
performance, adding distance prediction further increases the downstream performance by a
large margin. Both losses have thus a strong impact and are complementary, confirming the
assumption that sense of direction and judgement of relative distance are two key skills for
spatially navigating agents.

Table 2 presents results on the test set, confirming the significant impact on each of
the considered metrics. ProjNeuralMap with auxiliary losses matches the performance of
(incomparable!) OracleMap on both Success and Progress. OracleMap has higher PPL and
SPL, but has also access to very strong privileged information.

Can an unstructured recurrent agent learn to map? — we explore whether an agent
without spatial inductive bias can be trained to learn a mapping strategy, to encode spatial
properties of the environment into its unstructured hidden representation. As shown in Ta-
ble 2, NoMap indeed strongly benefits from the auxiliary supervision (Success for instance
jumping from 7.4% to 22.4%). Improvement is significant, closing the gap with ProjNeu-
ralMap trained with vanilla RL. The quality of extra supervision can thus help to guide the
learnt representation, mitigating the need for incorporating inductive biases into neural net-
works. When both are trained with our auxiliary losses, ProjNeural still outperforms NoMap,
indicating that spatial inductive bias still provides an edge.

Comparison with the state-of-the-art — our method corresponds to the winning entry
of the CVPR 2021 Multi-On Challenge organized with the Embodied AI Workshop, shown
in Table 3. Compared to the method described above, the challenge entry contained a third
additional auxiliary loss, which required the agent to predict whether an object had been
seen or not in the observation history. Post-challenge analysis however showed, that this
third loss did not have an impact. The official challenge ranking is done with PPL, which
evaluates correct mapping (quicker and more direct finding of objects), while mapping does

http://multion-challenge.cs.sfu.ca/
https://www.youtube.com/watch?v=ghX5UDWD1HU
https://www.youtube.com/watch?v=boDaAORoKho
https://embodied-ai.org/
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