
Simulated Learning and Domain Transfer for Indoor Robot Navigation

Pierre Marza Hector Missiaen

INSA Lyon
Villeurbanne, FRANCE

Grégoire Gentil

Abstract

The robot navigation task in a known or unknown envi-
ronment is a trending subject in the Computer Vision field.
Various studies showed promising results with Reinforce-
ment Learning, often coupled with Deep Learning methods.
However, these approaches usually require extensive train-
ing to be done with the robot in the anticipated environment.
The field experimented with Simulated Environment Learn-
ing as it allows for very fast bootstrapping and learning.
This specific task requires then to use the learned model in
a real environment. An efficient way to close the gap be-
tween simulated and real data distributions is through Do-
main Transfer, i.e. methods trying to build models that are
robust to a change of characteristics inside the considered
data. In this paper, we provide a comparison between sev-
eral state-of-the-art approaches to reduce Domain Shift in
the case of our Robot Navigation task. We focus on ad-
versarial methods, leveraging the generative capabilities of
the Variational AutoEncoder and CycleGAN architectures
to learn general latent representations. Unsupervised Do-
main Adaptation for robot pose estimation is also experi-
mented. The experiments are to be done on CITI’s provided
robot equipped with a Microsoft Kinect video and depth
sensor. We thus introduce CITI-Sim2Real, a new dataset
adapted to our problem.

1. Introduction
Certain tasks requiring learning can suffer from a lack

of available labelled data. Among them, we can cite 3D
pose estimation as in [5] or robot navigation problem we
are focusing on in this paper. The final aim is to provide
navigation orders to a trained agent which will have to
move to the right place in the space. To this end, the agent
is given an image of its environment and has to pick actions
in order to move. The robot policy is trained using a Deep
Reinforcement Learning approach [2], considered a fixed
component of the method that will thus not be discussed

Figure 1: Examples of samples from CITI-Sim2Real
dataset. Top: Simulated pair Bottom: Real-world pair
Left: RGB images Right: Depth Maps

in this paper, based on features extracted from the input
image.

Mnih et al. [12] presents a Deep Reinforcement Learn-
ing framework to play Atari Games using game images.
The power of Neural Networks feature representation
allows the authors to predict very efficient agent policies,
this method being now seen as a breakthrough in the field.

Feature extraction is an important Computer Vision
task that plays a central role in any system dealing with
complex input data. In the case of images, the power of
Deep Convolutional Neural Networks comes from the
hierarchical feature extraction they are performing while
the information is passed through layers. In this paper, we
are focusing on the Feature Extraction Block of the final
Deep Reinforcement Learning Architecture.

1



As the training of the agent involves taking actions and,
thus, navigating, not only we can lack labelled data but
training a robot to navigate in a real-world environment is
not possible. Therefore, simulated environments provide a
straightforward generation of controlled and easily labelled
information. Another interest of such synthetic framework
is to allow the robot to evolve and learn in safe conditions.
However, one drawback of systems trained on synthetic
data is their possible lack of generalization on other data
distributions, e.g. real-world images. A task of Domain
Transfer has then to be performed. The core aim is here to
extract features from images that will be as pertinent on a
particular distribution of samples, e.g. real-world data, as
on another one, e.g. simulated data.

Instead of tackling directly the robot navigation prob-
lem, we focus in this paper on an easier task that is robot
pose estimation. This choice was made to simplify the
evaluation process and promising results could easily
be extended to the initial navigation goal. Robot pose
estimation is indeed already an interesting measure of how
knowledge gained on synthetic data can be generalized to
real images.

Simulated Learning being really convenient to deal
with particular tasks, several synthetic environments were
designed. An example of this is Habitat [13] that provides a
realistic 3D space any agent can evolve into. In the context
of our work, we were given a similar simulation of one
specific floor of the CITI Lab building. We also sampled
real-world photos of this same space using a Microsoft
Kinect video and depth sensor that is quite similar than
the camera that will be used by the robot when navigating.
CITI-Sim2Real, our new dataset, is then made of 2 parts
- simulated and real-world data - that both contain (RGB
image, depth map) pairs. It is important to notice that
the dataset is not aligned. In fact, the simulated and real
images are not paired, i.e. the photos are not taken from the
same points of view. Figure 1 presents samples taken from
CITI-Sim2Real dataset.

The contributions of this work are :

• Creation of CITI-Sim2Real, a new Robot Navigation
Dataset made of real-world and simulated pairs of
RGB images and depth maps from various viewpoints
of the CITI Lab environment. The synthetic and real
samples are unpaired.

• A comparison of state-of-the-art methods to perform
robust Feature Extraction on RGB and depth inputs

• The use of a Domain Transfer approach to predict
robot pose given real-world images.

2. Related Work

Deep learning Explained by LeCun [11] in 2015, Deep
Learning was introduced as the outcome of several decades
of research on text, speech and images recognition tasks.
Deep learning is defined as the combination of indepen-
dently trainable modules that decompose sequentially an
input in its significant features. The structure hence con-
structed is then trained against labelled data which tune the
connection between each modules using a backpropagation
method.

Deep Learning neural networks can perform nicely when
trained on large-scale datasets to perform a precise task.
In [14], K. Simonyan and A. Zisserman introduce their
well-known VGG16 architecture to perform classification
task on the Imagenet large-scale dataset [3]. They show
they can achieve drastically better results when increasing
the depth of their Convolutional Neural Network, beating
prior state-of-the-art architectures. Such models can indeed
encapsulate a high level of complexity and adding more
layers is a way to extract more fine-grained features.
However, the features being dependent on the task and data
used, these algorithms often tend to be biased towards the
information they were trained on. Generalizing a Neural
Network to a new task or data can be done using fine-tuning
techniques. The most famous is Transfer Learning. Tan
et al. [15] provide a complete overview of current Deep
Transfer Learning methods. The core goal of these is to
use the hierarchical nature of Convolutional Networks.
First layers will indeed extract low-level features such as
edges in the images while last layers encapsulate high-level
semantic information. The idea behind Transfer Learning
is thus to adapt a pre-trained model to a new task or dataset
by only re-training the last layers to adapt them to the new
considered semantic information. However, such approach
generally involves access to a huge amount of data and can
be computationally expensive.

Domain Transfer Domain Transfer methods try to close
the gap between different data domains, usually during
training.

An approach can be to build models using data that
is less sensitive to domain change. By extending their
Estimation Pose model to video, Doersch et al. [5] allow
their architecture to be more robust to differences between
synthetic and real-world data. They indeed leverage
motion-related information such as an optical flow that
captures motion between frames and not task or dataset-
specific details. Indeed, vectors describing motion will be
more robust to domain shift than low-level pixel-related
data.

Based on a similar distribution of both domains samples,

2



the interface between domains can be modelled as a com-
mon representation (e.g. the latent space of a variational
autoencoder) or can be done by transferring the input
directly from source to target domain (e.g. a target sample
is considered as a source sample).

Manifold Alignment, as in [1], can also be used to
perform Domain Transfer. However, in this paper, authors
tackle the problem of transferring knowledge between
different actions taken by an agent, quite different from
closing the gap between simulated and real environments
in our case.

Then, lots of recent works have been focusing on adver-
sarial approaches to reduce domain shifts by transferring
feature representations. The first of its kind [6] introduced
the adversarial learning method based on domain adapta-
tion task. The concept of their method resides in the fact
that a model trained both on labelled data from the source
domain and unlabelled data from the target domain tends to
factor in features that discriminate on the main learning task
but indiscriminate according to the domain shift. Later with
[16], Tzeng et al. build a general framework describing
adversarial methods applied to Domain Transfer. This
effort of formalization allows them to highlight interests
and drawbacks of current state-of-the-art methods and
therefore to propose their own approach called Adversarial
Discriminative Domain Adaptation (ADDA). They tackle
the task of classification while having a set of source images
Xs, their corresponding labels Ys and some target images
Xt. They, therefore, want to learn a mapping function
Mt encapsulating a representation of the target input and
a classifier Ct using the latter. As supervised learning is
not possible due to the lack of target labels, they build a
general definition of the transfer method aiming to learn
Ms and Cs (equivalent to Mt and Ct but on source domain)
with Ms close enough to Mt so that Cs can be used on
target inputs. They define features of different possible
adversarial Domain Transfer approaches: weight sharing
between source and target feature extractors, symmetric
or asymmetric methods and finally the chosen adversarial
loss. After experimenting on this, they show previous
generative methods such as CycleGAN [18] (see below)
for instance often allow interesting visual results but are
sub-optimal when finally used on discriminative tasks.
They can also struggle to close important domain gaps.
On the other hand, discriminative methods in the literature
can deal with larger domain differences but didn’t take
advantage of powerful adversarial losses. They finally use
what they learned from their experiments to design ADDA.
It is a discriminative two-step approach with unshared
weights. The source feature extractor is first trained along
with the classifier in a supervised fashion before transfer-
ring knowledge to the target feature extraction network
through a domain-adversarial loss. Having two separate

discriminative representation networks allows performing
more domain-specific feature extraction.

The model of Zhu et al. [17] is trained using the
previously mentioned ADDA framework for a task similar
to ours, indoor robot navigation. The goal (RoomGoal in
their use case) is defined as a feature vector and embedded
in an LSTM network. They paired the method with a policy
distillation process and obtained a 21.73% improvement
over their estimated baseline.

Unlike [16], others try to leverage the advantages of
generative approaches. Gupta et al. [9] use indeed a Cycle-
GAN to transfer an image used by a robotic arm from one
environment to another. As described in [18], CycleGAN
consists of two GAN [8] networks, each one learning an
opposite mapping: the first is trained to transfer the input
image from environment A to B, and the other GAN to
transfer from B to A. Both GANs are thus trained using a
consistency loss. This paper is interesting in the way that
it provides an alternative learning method to train a model
to transfer one image from a domain to another one. They
take a policy trained in a given environment, then try to
learn the adversarial model that allows transferring input
(images taken by the robot camera) from the new domain
to the domain in which the policy has been trained. Thus,
they introduce the idea that we can consider transferring
the real environment image taken during the navigation to
the simulated domain before forwarding it to the policy
network, instead of trying to make the simulated and real
environment features closer in terms of distribution during
training. One of the most interesting points of this approach
is that there is no need to re-train the policy network in a
new environment, but only the transfer model.

Variational AutoEncoder In this work, we try to take ad-
vantage of the interesting characteristics of the Variational
AutoEncoder (VAE). It is a generative model framework
built upon basic functions like neural networks. It allows
for a closely coupled generation of data from a dataset
of unknown distribution. Based on a Bayesian estimator
(Kingma and Welling) [10], the generated data then fits the
distribution with slight variation. Doersch [4] provides a
very detailed description of VAEs and the theories they are
built on top of. Like all autoencoders, the initial goal is to
learn an informative enough latent representation of the in-
put in order to be able to reconstruct it properly. However,
unlike other encoder-decoder approaches, VAEs learn to re-
trieve the distribution of the bottleneck latent variables. As
a result, it makes it possible to sample directly latent values,
thus generating new examples belonging to the training dis-
tribution. To this end, aside from reconstructing the input
correctly, the network has to be regularized to ensure the la-
tent space is continuous enough. Indeed, autoencoders tend

3



to build discrete latent representations to minimize recon-
struction error. The idea behind VAEs is then to enforce
latent distributions to be close to standard normal distribu-
tions.

Exisiting models Another approach for unsupervised
learning with domain adaptation was explored by Ganin
and Lempitsky [6] [7] which showed better than average
results on several datasets which, however, were quite less
complex than our task. We chose to adapt their framework
for the pose estimation domain transfer task and the archi-
tecture will be detailed much more in the Methods section.
Basically, it extracts features from the input and store it in
a feature vector, then during training we backpropagate two
losses, a label related loss and a domain discriminator clas-
sifier loss.

3. CITI-Sim2Real Dataset
Our approach on the task of robot navigation was data-

driven by the CITI-Sim2Real dataset. This dataset is made
of both real and simulated samples. The images from the
two domains are not aligned, i.e. there are not pairs of sim-
ulated and real images corresponding to the same viewpoint
in the real scene. Figure 1 shows few examples taken from
the dataset.

The latter is a large image repository split into training
and validation subsets. It is split up with a 70-30 strategy. It
contains 100,000 samples directly shot from the simulation
environment, with separate files for depth and RGB infor-
mation. The simulation is based on a Matterport scan of the
CITI lab which is a large floor with 8 offices, corridors and
large spaces. The Matterport simulation models the space
from a wide angle visible-light camera and a depth sensor.
Then, the dataset is built from a script that walks through
the simulation. These images are labelled with their posi-
tion and angle according to the referential of the space.

The real environment dataset was built for the purpose
of these experiments. It contains a small number of pictures
manually shot from the robot purposed to the simulation.
The robot is a Turtle Bot, which is basically a motorized
platform with a Kinect camera mounted on it and a ”brain”
computer to handle the policy choices. Our coverage strat-
egy was to shot most of the discoverable space with the
robot in every angle to cover the possible field of view of
the robot. We ended up with a set of 870 independent poses
with both visible and infrared depth information in separate
files as well. Note that these images are not labelled in any
way.

Our biggest concern was to guarantee that the pixel-level
distributions of the two datasets were similar to facilitate
domain transfer. An issue for us was to ensure consistent
lighting conditions in the space.

Figure 2 presents pixel-level distributions of the dataset

(a) Red Channel (b) Green Channel

(c) Blue Channel (d) Depth Channel

Figure 2: Pixel-level distributions of real and simulated im-
ages inside the CITI-Sim2Real Dataset for each of their four
channels (RGBD). Blue and orange curves correspond to
simulated and real distributions respectively.

images. We computed the Jensen-Shannon divergence be-
tween R, G, B and Depth value distributions of data from
both domains. Real and simulated R, G, B channel value
distributions are really close. However, the huge divergence
in Depth value distributions highlights the poor quality of
depth measures from the Kinect sensor (as can be seen in
Figure 1) compared with the ideal results coming from the
simulation. To deal with this problem, we tried to apply
some modifications on the depth images so their histograms
are more similar to the simulated ones. First, we applied
a scale over each pixel values to shift histogram in the di-
rection of the black colours. In fact, as we can see, the
real depth images are significantly clearer than the simu-
lated ones. In a second step, we tried to correct some errors
of the depth sensor that resulted in unexpected white pixels
on the images. We applied an algorithm that replaces white
pixels by the adjacent darkest colour.

The output data is based on a representation of the CITI
lab and has to be normalized accordingly especially in terms
of coordinates.

4. Methods

4.1. Image feature extraction from simulated envi-
ronments

Building a robust feature extraction is an important goal
when dealing with domain transfer. We thus applied two
well-known approaches on the CITI-Sim2Real image sam-
ples, the Variational AutoEncoder and the CycleGAN.

4



4.1.1 Variational AutoEncoder

Our first task was to see how a Variational AutoEncoder
(VAE) would allow for unsupervised feature extraction and
the construction of general representations. Figure 3 is
an abstracted representation of the learning framework we
could use to perform Domain Transfer on the latent distri-
butions learnt by a VAE. In our case, we focused only on
training the encoder and decoder parts (including the ex-
traction of a latent space representation) on simulated data.

The RGBD input is first encoded. To this end, it is sent
through a series of fully convolutional layers with chosen
kernel size and stride values to downsample the image se-
quentially. The dimension of the feature maps increases
during the encoding forward pass. Linear layers are used
to infer the parameters, i.e. mean and variance, of the Gaus-
sian distributions from where the bottleneck latent repre-
sentation is sampled. The latter is then resized using a lin-
ear operation before to go through the decoder. A series
of deconvolutions allows to upsample the feature map di-
mensions until being equal to the initial input image. In a
symmetric fashion, the number of filters decreases during
the decoding forward pass. Figure 6 presents the final VAE
architecture in more details, as explained in the Results and
Experiments section.

The learning process involves the minimization of a loss
function composed of two terms. The first one is the recon-
struction term, i.e. how much the output image is far from
the input. This allows to verify the quality of the learnt la-
tent representation. Indeed, in the case it doesn’t contain
enough information, the reconstruction from the decoder
will lack quality. The reconstruction error is measured using
pixel-wise binary cross-entropy between the reconstructed
input and the input. The second loss term is built by com-
puting the Kullback–Leibler divergence between the latent
Gaussian distributions and Standard Gaussian distributions
N (0, I). This enforces the learnt latent space to be contin-
uous, thus providing generative capabilities.

4.1.2 CycleGAN

We also tried to apply the CycleGAN solution to our prob-
lem. As described before, it allows to transfer images from
the real domain to the simulated domain, and vice versa,
using two GANs. Each GAN consists of a discriminator
that can make the difference between images from real
and simulated domains, and a generator that is trained to
generate images of the real domain from images of the
simulated domain (symmetrically, from real to simulated).
The first loss that is optimized measures the ability of the
discriminators to determine if a given image was either
generated or came from the dataset. The parameters of
the discriminators must be modified to reduce this loss,
while those of the generators must, on the other hand,

Figure 3: Potential domain transfer learning framework us-
ing a Variational AutoEncoder as feature extractor

be optimized so that the discriminators be less confident,
meaning the generated images are close to the ones taken
from the dataset distribution. The second loss used to train
the generators is the cycle consistency loss. It measures
the difference between an original image from one domain,
and the generated image passed through the two generators,
first transferred to another domain by a generator, then
transferred back to its original domain by the second
generator. This allows to train the GANs using an unpaired
dataset, which is the case of our CITI-Sim2Real dataset.

If we want to use this trained CycleGAN to perform
robot navigation in the real world, there are two possibili-
ties. The first one is to use a specific part of the generators
as a feature extractor and use it in the workflow presented
in Figure 3 in the same way as the VAE. The second
solution is to use generators directly as domain transfer
tools, to convert our real images to images that are close
to the simulated data distribution. Then, we can use these
transferred images directly in the Deep Reinforcement
Learning model trained in the simulated environment. This
last approach could be hard to use in real time as a first
forward pass would have to be processed to generate a
simulated-like representation of a real image before to infer
the best action to take.

4.2. Domain transfer for pose estimation

Each one of the architectures mentioned before provides
us with a good framework to approach new problems, es-
pecially for our domain transfer task. An intermediate task
on our road to indoor robot navigation was to prove that
the domain adaptation could be done properly. As previ-
ously mentioned, the simulated images are labelled with
their pose, noted X = (posx, posy, posz, angle). How-
ever, considering the flatness of the CITI lab, as the posy
coordinate represents height, it’s irrelevant and thus will be
ignored during data processing.

5



Figure 4: Model of our network from Ganin and Lempit-
sky’s work [6]

Our approach was to define a network using the pre-
viously studied methods of feature extraction to estimate
those 3 pose values. The model engineered was inspired
by Ganin and Lempitsky [6] Figure 4 1 which consists of
a feature extractor, a label predictor, and a domain classi-
fier, also called discriminator. The latter is trained through a
gradient reversal layer and aims at classifying the extracted
features as coming from a real or simulated image in in-
put. In our case, the label predictor is a pose regression
network made of linear layers that aims to predict the previ-
ously mentioned 3 values describing the current state of the
robot. Except for the regressor, all of these structures are
made of deep convolutions and errors from the label predic-
tor constitute a second loss during training. In the end, we
should obtain a robust system that estimates as closely as
possible the position of the robot solely from its RGB input
and recognition of its surroundings.

This approach is really interesting because, unlike the
VAE and the CycleGAN that try to learn the joint distribu-
tion of input and output variables in order to encapsulate
generative properties, we are here only extracting discrim-
inative features. As explained in [16], this could lead to
better performance in terms of pose regression.

5. Results and Experiments

To perform experiments, we have been given access to
the LIRIS-Imagine computing cluster which consists of 4
nodes, with each one of them accessing 4 high-end work-
station grade GPUs. The maximum training time was two
days, that we sometimes used entirely or not, depending on
the convergence time of the chosen methods.

5.1. Variational Auto Encoding

The first step was to train the VAE on the simulated im-
ages to show that the learnt latent space was indeed a rep-
resentation of the dataset. We performed an important hy-
perparameters search to find the most appropriate learning
rate, training batch size, latent representation size and more

1https://github.com/machine-perception-robotics-group/
DANN

Figure 5: Reconstruction results from the Variational Au-
toEncoder on validation RGB images. Left : Input images
Right : Reconstructions

generally the network capacity (number of layers in the en-
coder and decoder, but also convolutional parameters such
as numbers of filters, strides and kernel sizes). Because of
the huge size of this search space, we performed a random,
thus not complete, search but also guided a lot by the best
state-of-the-art architectures.

6

https://github.com/machine-perception-robotics-group/DANN
https://github.com/machine-perception-robotics-group/DANN


Figure 6: VAE Architecture

Figure 6 presents the final chosen architecture. As a re-
sult, the encoder is made of four convolutional layers with
a kernel size of 4 and a stride of 2 each. The number of
filters goes from 32 to 256, doubled between layers. We
apply batch normalization on the outputs of the convolu-
tional layers to normalize these between 0 and 1 and use
the well-known Rectified Linear Unit (ReLU) as activation
function, useful to avoid vanishing gradient. Inside the de-
coder, we also have batch normalization and ReLU activa-
tions. It is made of 4 deconvolutions, symmetric to the en-
coder in terms of numbers of filters. The kernel sizes are 5
for the first two and 6 for the next ones. The last activation
function is a Sigmoid in order to get output pixel values be-
tween 0 and 1. Finally, the latent representation is made of
256 values.

With the setup of our Variational AutoEncoder, we de-
fined an arbitrary quality evaluation based on comparing
the input picture and the output of the decoder. We then
describe the quality of the reconstruction through its sharp-
ness and actual feature reproduction. Figure 5 shows cou-
ples of validation inputs and outputs. The aim of training
a VAE is of course not to get a reconstruction as detailed
as the input because we are also focusing on getting a con-
tinuous latent space. However, it looks like the model en-
capsulates most of the semantic as the main elements such
as walls, windows, lights seem to be retrieved. More fine-
tuning could have been interesting to get sharper outputs
though. Another interesting finding is that the depth infor-
mation doesn’t seem to improve the reconstruction quality
significantly while increasing the complexity of the model
as it adds one dimension to the input. Figure 5 was thus
obtained with RGB inputs only.

A part of our experimentation has also been to walk
inside the latent space of the VAE to verify the semantic
meaning of the learnt condensed representation. To this
end, we chose random images from the dataset and com-
puted their latent representation using the encoding path of
the network. We then changed the values of the different
variables to see which impact they had on the reconstructed
image, thus indicating their semantic meaning. Figure 7

Figure 7: Outputs of the VAE decoder when modifying the
value of 2 latent variables individually, keeping the others
fixed. Each column corresponds to a particular variable.
First row is a small value of the variable, second an inter-
mediate value and third row a huge value.

shows two examples of the impact of modifying the value
of a chosen latent variable, keeping all the others fixed. The
first variable (left column) seems to be responsible for the
brightness of the output. Indeed, as we increase its value
(going from the top to the bottom of the figure), the obtained
output becomes much brighter. The second latent variable
is correlated with the presence or not of a blue object in
the background of the image. When increasing its value,
the given object starts appearing. It also changes slightly
the color of the desk on the left. The results where gen-
erated using a trained VAE with a latent representation of
size only 32 as it allows for easier visualization of the latent
space. As a result, outputs are less sharp then when using a
VAE with a bigger representation size, e.g. 256 in Figure 5.

5.2. CycleGAN

To experiment with the CycleGAN, we used an imple-
mentation proposed on GitHub 2 by the author of the origi-

2https://github.com/junyanz/
pytorch-CycleGAN-and-pix2pix

7

https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix


Figure 8: Examples of result generated by the CycleGAN.
Left : Original Real. Generated Sim. Reconstructed Real.
Right : Original Sim. Generated Real. Reconstructed Sim.

nal paper [9] that introduced the CycleGAN. We trained the
models using our dataset. You can find some transfer ex-
amples in Figure 8. On each column, the first image is an
original image taken by the Kinect sensor or captured in the
simulated environment. The second one is the result of the
transfer to the other environment. The last one is the recon-
struction of the original image after using both GANs. We
can observe some color and contrast changes. It is not evi-
dent to analyse if the results seem good or not. Indeed, we
have not found how to clearly differentiate real and simu-
lated distributions of colours and characteristics, so we can-
not act if the transfer is good or not. Unfortunately, we did
not test the trained model on the navigation task to evaluate
its performances, for time constraints.

5.3. Domain transfer with pose estimation

The pose estimation network was built from the feature
extractor and label decoder of one of our fellow colleagues
Theo Jaunet and then integrated to the Ganin-like [6] frame-
work. It is known that this network used for pose estimation
solely on simulated images is working properly with a sat-
isfying 83% of estimated poses close enough to test ground
truth (difference smaller than a chosen margin). The proper

Figure 9: Examples of couples validation real input and
nearest simulated image based on the predicted pose. Left
: Real images Right : Simulated nearest inputs

8



task was then to train once again this network in the frame-
work with both real and simulated images.

For results evaluation, as the pose of real images were
unknown, we computed the distance between predicted
pose and all the target poses known for the simulated im-
ages in the dataset. The domain transfer efficiency is eval-
uated by displaying the image of the simulated domain that
is the closest to the real image prediction pose in terms of
both position and angle.

With this configuration and proper parameters for the
framework, we obtained pairs of images representing real
images and their predicted representations in the simulated
space that didn’t match as well as we could hope. How-
ever, this is difficult to really evaluate results as visual com-
parison can be quite subjective. Some issues in training
could also be caused by the lack of real images. We tried
to bootstrap the network from pre-trained versions on sim-
ulated images of the feature extractor and pose regressor
components (warm start through initialization using a pre-
trained model) which showed promising results. Thus, dur-
ing training, we progressively tend to lose a bit of precision
on pose estimation for simulated images (compared with
initially pre-trained architecture), which can be explained as
we are also now focusing on closing the gap between real
and simulated domains by extracting a more general and ro-
bust representation. However, everything was not lost, we
still got some promising results as shown in Figure 9. We
can’t say definitely that these good results are the conse-
quence of proper training or the remain of the pre-training.

We also tried to compare a set of real images to the pre-
trained feature extractor and pose regressor to prove that the
domain transfer was indeed necessary. This showed us that
simulated images would get very good positioning results
when it would perform poorly on our set of real images.

Originally, the feature extractor architecture was de-
signed with the depth dimension, however, we discovered
that when training on the framework, the results were poorer
using the depth on real images. This is probably due to
misalignment of the IR emitter and receiver on the Kinect
which lead to poor image resolution and artifacts on the cap-
tured depth images.

6. Conclusion
We’ve iterated on many works from the literature to ex-

periment with domain transfer on a robot navigation task.
Our work gave marginal results on the simulation to reality
transfer. We’ve targeted an intermediate results set with the
position estimation which proved domain transfer compe-
tence. We have also focused strongly on understanding and
experimenting with unsupervised feature extraction, mainly
using the VAE model on our data. We’ve contributed to
build a starter dataset for the task of robot navigation in the
CITI laboratory. The dataset contains 870 pictures from var-

ious positions and angles on the floor, the data contains both
RGB and depth information extracted from the Kinect sen-
sors.

This approach of simulation training and domain trans-
fer looks very promising as it will require solely a 3D scan
of the desired walkable space for the robot to adapt. The
simulation training speed is then supposed to be very fast
and the RoomGoal is easily solved.

9



References
[1] H. B. Ammar, E. Eaton, P. Ruvolo, and M. E. Taylor. Un-

supervised Cross-Domain Transfer in Policy Gradient Re-
inforcement Learning via Manifold Alignment. In Twenty-
Ninth AAAI Conference on Artificial Intelligence, Feb. 2015.

[2] E. Beeching, C. Wolf, J. Dibangoye, and O. Simonin. Deep
reinforcement learning on a budget: 3d control and reasoning
without a supercomputer. CoRR, abs/1904.01806, 2019.

[3] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-
Fei. ImageNet: A large-scale hierarchical image database.
In IEEE Conference on Computer Vision and Pattern Recog-
nition, June 2009.

[4] C. Doersch. Tutorial on Variational Autoencoders. arXiv
preprint, arXiv:1606.05908, June 2016.

[5] C. Doersch and A. Zisserman. Sim2real transfer learning
for 3d human pose estimation: motion to the rescue. In Ad-
vances in Neural Information Processing Systems 32, pages
12929–12941. 2019.

[6] Y. Ganin and V. Lempitsky. Unsupervised domain adapta-
tion by backpropagation. In Proceedings of the 32nd In-
ternational Conference on International Conference on Ma-
chine Learning - Volume 37, ICML’15, page 1180–1189.
JMLR.org, 2015.

[7] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle,
F. Laviolette, M. Marchand, and V. Lempitsky. Domain-
adversarial training of neural networks. J. Mach. Learn. Res.,
17(1):2096–2030, Jan. 2016.

[8] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. C. Courville, and Y. Bengio.
Generative adversarial nets. In NIPS, 2014.

[9] A. Gupta and J. Booher. CycleGAN for sim2real Domain
Adaptation. In Stanford Technical Publications, page 8,
2019.

[10] D. P. Kingma and M. Welling. Auto-Encoding Variational
Bayes. In International Conference on Learning Represen-
tations, Dec. 2013.

[11] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. In
Nature, volume 521, pages 436–444, May 2015.

[12] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves,
I. Antonoglou, D. Wierstra, and M. Riedmiller. Playing
Atari with Deep Reinforcement Learning. arXiv preprint,
arXiv:1312.5602, Dec. 2013.

[13] M. Savva, A. Kadian, O. Maksymets, Y. Zhao, E. Wijmans,
B. Jain, J. Straub, J. Liu, V. Koltun, J. Malik, D. Parikh, and
D. Batra. Habitat: A Platform for Embodied AI Research. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, page 9, 2019.

[14] K. Simonyan and A. Zisserman. Very Deep Convolutional
Networks for Large-Scale Image Recognition. In Interna-
tional Conference on Learning Representations, 2015.

[15] C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang, and C. Liu.
A Survey on Deep Transfer Learning. In Artificial Neural
Networks and Machine Learning – ICANN 2018, pages 270–
279, Springer International Publishing, 2018.

[16] E. Tzeng, J. Hoffman, K. Saenko, and T. Darrell. Adversar-
ial discriminative domain adaptation. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 7167–7176, 2017.

[17] F. Zhu, L. Zhu, and Y. Yang. Sim-real joint reinforcement
transfer for 3d indoor navigation. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recog-
nition, pages 11388–11397, 2019.

[18] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired Image-
To-Image Translation Using Cycle-Consistent Adversarial
Networks. In IEEE International Conference on Computer
Vision, pages 2242–2251, 2017.

10


