Previous lecture/practical

Any question?

Previous lecture/practical

Any question?

Recap: you will have to implement, train and evaluate RNN models
during the final project —> Important to understand the underlying
mechanisms...

Lecture 3: Transformers and Attention

N x

7

Add & Norm

Feed
Forward

A

.

Add & Norm

Multi-Head
Attention

¢t

.

Introduction to Deep Learnin

OQutput

Probabilities

|

Softmax

|

Linear

A

r

Add & Norm

Feed
Forward

)

Add & Norm

Multi-Head
Attention

7 7 7

N x

Add & Norm

Masked
Multi-Head
Attention

A_t

J

Positional
Encoding

o

Input
Embedding

T

Inputs

.

v,

ral

Output
Embedding

T

Outputs

(shifted right)

Positional
Encoding

Course Overview

1. Convolutional Neural Networks (1h lecture + 3h practical)
2. Recurrent Neural Networks (1h lecture + 3h practical)
3. Transformers and Attention (1h lecture + 3h practical)

4. Project (12h)

Course Overview

1. Convolutional Neural Networks (1h lecture + 3h practical)
2. Recurrent Neural Networks (1h lecture + 3h practical)
3. Transformers and Attention (1h lecture + 3h practical)

4. Project (12h)

Useful resources about Attention/Transformers

- Vaswani et al., Attention is all you need, NeurlPS 2017
- Dosovitskiy et al., An image is worth 16x16 words: Transformers for image recognition at scale, ICLR 2021

- The lllustrated Transformer: https://jalammar.github.io/illustrated-transformer/
- The annotated Transformer: https://nlp.seas.harvard.edu/2018/04/03/attention.html

https://jalammar.github.io/illustrated-transformer/
https://nlp.seas.harvard.edu/2018/04/03/attention.html

The motivation behind attention

MLP —> Each neuron gets information from all others from the previous layer
CNN —> Each neuron gets information from only neurons in its neighbourhood
RNN —> Information is propagated inside a hidden state memory

Attention —> Can a neuron get information from neurons depending on the similarity
between their associated values?

Attention in recurrent networks

X, X X X

Figure 1: The graphical illus-
tration of the proposed model
trying to generate the ¢-th tar-
get word y; gilven a source
sentence (1, 2,...,TT).

Bahdanau et al., Neural machine translation by jointly learning to align and translate, ICLR 2015

Attention is all you need

Output
Probabilities

1

| Softmax |

1

| Linear |

—t
l Add & Norm h\

Feed
Forward
y

| Add &INorm J—~

Multi-Head
Attention

} ,r_) N x

J

|
| Add & Norm J—~

(
4 l)
~—>| Add & Norm)
Feed
Forward
L
Nx | Adg & Norm)
Multi-Head
Attention
A 4 2
L
S j)
Positional
Encoding

Input
Embedding

T

Inputs

Vaswani et al. Attention is all you need, NeurlPS 2017

Masked
Multi-Head
Attention
AL ? J)
_ 7)
Positional
Encoding

Output
Embedding

T

Outputs
(shifted right)

9

Attention is all you need — Self-attention

Let’s consider a set X = {x;} of vectors. These elements will be called tokens in the remaining of the course.

An important assumption is that tokens are related in a certain way.

The idea behind self-attention is to enrich the representation of each item with the information contained in other
vectors.

Example: A sentence where each word is a token. The representation of the word “sky” gets enriched by the
information brought by other tokens (e.g. the “blue” token can be used to enrich “sky” as it provides colour
information). All tokens do not enrich “sky” in the same way (see arrow thickness).

The

10

Attention is all you need — Self-attention

Let’s consider a set X = {x;} of vectors. These elements will be called tokens in the remaining of the course.

An important assumption is that tokens are related in a certain way.

The idea behind self-attention is to enrich the representation of each item with the information contained in other
vectors.

In self-attention, each item attends to all items in the set (even to itself).

11

Attention is all you need — Self-attention

Let’s consider a set X = {x;} of vectors. These elements will be called tokens in the remaining of the course.

An important assumption is that tokens are related in a certain way.

The idea behind self-attention is to enrich the representation of each item with the information contained in other
vectors.

In self-attention, each item attends to all items in the set (even to itself).

But, what do we mean by “attend”?

12

Attention is all you need — Self-attention

We predict 3 quantities for each token x; € R“:

1. e R%
2. e R%
3. c R%

We thus learn 3 linear layers (11, € R@tDxd 1)) e Rla+Dxd, 1)/
to predict quantities from input x;.

13

R
O0000000

=4
N
+
\
X
Q

Attention is all you need — Self-attention

We predict 3 quantities for each token x; € R“:

1. e R%
2. e R%
3. c R%

We thus learn 3 linear layers (\/, € R@+Dxd, 1)) e R@+Dxd 1/ e Rlatxd,
to predict quantities from input x;.

If we write X as a matrix where each row is an x; item we can compute all keys X,
qgueries (J , and values V as,

14

O0000000

Attention is all you need — Self-attention

We predict 3 quantities for each token x; € R“:

1. e R% —> My summary when items search for information in me.
2. e R% —> What | want to search for in other items.
3. e R% —> The information retrieved from me by other items.

15

Attention is all you need — Self-attention

We predict 3 quantities for each token x; € R“:

1. e R% —> My summary when items search for information in me. (& is the matrix of all keys)

2. e R% —> What | want to search for in other items. () is the matrix of all queries)

3. e R% —> The information retrieved from me by other items. (! is the matrix of all values)

We compute a scaled similarity matrix S between all and , by performing a dot product and a

scaling operation:

16

Attention is all you need — Self-attention

We predict 3 quantities for each token x; € R“:

1. e R% —> My summary when items search for information in me. (& is the matrix of all keys)

2. e R% —> What | want to search for in other items. () is the matrix of all queries)

3. e R% —> The information retrieved from me by other items. (! is the matrix of all values)

We compute a scaled similarity matrix S between all and , by performing a dot product and a

scaling operation:

For each query, we compute a distribution over keys by performing a softmax operation. The final matrix is A:

A = softmax($) l

0(z); = fori=1,...,Kandz=(z,....,z,) € R¥

K
., e
Z =1 From https://en.wikipedia.org/wiki/Softmax_function

17

Attention is all you need — Self-attention

We predict 3 quantities for each token x; € R“:

1. e R% —> My summary when items search for information in me. (& is the matrix of all keys)

2. e R% —> What | want to search for in other items. () is the matrix of all queries)

3. e R% —> The information retrieved from me by other items. (! is the matrix of all values)

We compute a scaled similarity matrix S between all and , by performing a dot product and a

scaling operation:

For each query, we compute a distribution over keys by performing a softmax operation. The final matrix is A:
A = softmax($)
Finally, the final representation of all tokens 7" is done by performing a linear combination of weighted by A

I'=AV

18

Attention is all you need — Multi-head Self-attention

Scaled Dot-Product Attention Multi-Head Attention

Scaled Dot-Product l "
Attention /

Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several
attention layers running in parallel.

Figure reproduced from Vaswani et al.

Vaswani et al. Attention is all you need, NeurlPS 2017 19

Attention is all you need — Multi-head Self-attention

Simple yet elegant idea: Multi-head attention allows projecting the same token
into different query, key, and value spaces.

This is a way for each token to query different information, but also to retrieve
different information from a same token.

20

Attention is all you need — Encoder-Decoder

The Encoder-Decoder architecture takes a set of tokens as input and outputs another set of token. More specifically, it
was applied to sentence translation: it is given a sentence in French as input and outputs a sentence in English.

A fundamental difference between encoder and decoder is the type of attention:
- Encoder: Bi-directional attention, i.e. each item attends to items before and after in the sequence.

- Decoder: Causal attention, i.e. each item only attends to items before in the sentence. The decoder generates a new
sentence so tokens after are simply not known yet!

Let’s now look at the encoder and the decoder separately.

21

Attention is all you need — Encoder

Vaswani et al. Attention is all you need, NeurlPS 2017

Add & Norm
Feed
Forward

Add & Norm
Multi-Head
Attention
1 J

Positional
Encoding

N x

O
Input

Inputs

22

Attention is all you need — Encoder

In the text of sentence translation, the input to the encoder is a sequence of words. But, this input has to be turned
into a numerical form, i.e. a sequence of embeddings. This is an important step!

Input
Embedding

Inputs

Vaswani et al. Attention is all you need, NeurlPS 2017 23

Attention is all you need — Encoder

Recap: a self-attention layer is applied to a set of items, i.e. an unordered collection of vectors.

But, as humans, we know that tokens in a sentence have an order!

We thus augment each embedding with information about where it is localized in the sentence.

This is done by adding a positional encoding.

Positional
Encoding

QU
Input

Inputs

Vaswani et al. Attention is all you need, NeurlPS 2017 24

Attention is all you need — Encoder

In the paper, authors experimented with:
- Learned positional embeddings
- Sine and cosine functions of different frequencies

PE,,,. 5 = sin <p0s/100()02i/dm0de|)

PE,) 2i11) = COS <p05/1()0()()2i/dm0de|)

Positional encodings have the same dimension as the input tokens as they will be summed. In the above equations,
pos is the position index in the sequence, and i is the dimension.

Vaswani et al. Attention is all you need, NeurlPS 2017 25

Attention is all you need — Encoder

The encoder is a sequence of N identical

(different weights!) layers:

1.
2.

3.

Multi-Head attention
Normalization with residual
connection (Add & Norm)
Feed Forward layer (simple
sequence of linear layer)
Normalization with residual
connection (Add & Norm)

Vaswani et al. Attention is all you need, NeurlPS 2017

Add & Norm
Feed
Forward
Add & Norm
Multi-Head
Attention

N x

Positional
Encoding

O
Input

Inputs

26

Attention is all you need — Encoder

The encoder is a sequence of N identical
(different weights!) layers:

1. Multi-Head attention

2. Normalization with residual
connection (Add & Norm)

3. Feed Forward layer (simple
sequence of linear layer)

4. Normalization with residual
connection (Add & Norm)

Vaswani et al. Attention is all you need, NeurlPS 2017

Add & Norm
Feed
Forward
Add & Norm
Multi-Head
Attention

N x

Positional
Encoding

O
Input

Inputs

27

The used normalization operation is the
Layer Normalization: normalizes output
values from all neurons in a layer for a
given training sample, i.e. output mean
and standard deviation are computed
across all neurons and used to
normalize outputs (subtracting the
mean and dividing by the std).

Multi-Head Attention:
out = MultiHeadAttention(x)

Add & Norm:
out = LayerNorm(out + x)

Attention is all you need — Decoder

Output
Probabilities

1

| Softmax |

1

| Linear |

t

(
| Add & Norm |<ﬁ

Feed
Forward
y

~

| Add & Norm <~

——
Multi-Head

Attention

N I

J

|
| Add & Norm J—~

Masked
Multi-Head

Attention

A_t 7

7

Output
Embedding

Outputs
(shifted right)

Vaswani et al. Attention is all you need, NeurlPS 2017 28

Qo

N x

Positional
Encoding

Attention is all you need — Decoder

This is a standard Multi-Head self-
attention block. It is called Masked
Multi-Head Attention as it is a causal
attention layer, each token only attends
to the ones before.

|
| Add & Norm J—~

Masked
Multi-Head
Attention

A_t 7

- | Z)
Qo

Output
Embedding

Outputs
(shifted right)

Positional
Encoding

Vaswani et al. Attention is all you need, NeurlPS 2017 29

Attention is all you need — Decoder

Encoder-Decoder Attention

This is also a standard Multi-Head
attention block. The difference is that it
is not a self-attention layer as the
gueries, keys and values are not
predicted from the same set.

Queries are predicted from the output
of Masked Multi-Head attention layer in
the decoder, while keys and values are
predicted from the output of the
encoder.

Vaswani et al. Attention is all you need, NeurlPS 2017

_ | 7

(Add & Norm J<~
—r—
Multi-Head

Attention

} ,r_} N x

J

|
| Add & Norm J—~

Masked
Multi-Head
Attention

A_t 7

Positional
Encoding

QO
Output

Outputs
(shifted right)

30

Attention is all you need — Decoder

Vaswani et al. Attention is all you need, NeurlPS 2017

(
| Add & Norm |<ﬁ

_ | 7

| D

Feed
Forward
y

| Add & Norm <~
——
Multi-Head

Attention

} ,r_) N x

J

|
| Add & Norm J—~

Masked
Multi-Head
Attention

A_t 7

Positional
Encoding

QO
Output

Outputs
(shifted right)

31

Attention is all you need — Decoder

Output
Probabilities

1

To generate the next token, we use a [SOﬁtmaX)

linear layer followed by softmax (Cnear)
activation function to obtain a — N

| Add & Norm |<ﬁ

distribution over all possible tokens. I Feod]
Forward
J

| Add & Norm <~
——
Multi-Head

Attention

g_}_}r_) N

J

|
| Add & Norm J—~

Masked
Multi-Head
Attention

A_t 7

_ | 7

»‘ Positional
t Encoding
Output
Embedding

Outputs
(shifted right)

Vaswani et al. Attention is all you need, NeurlPS 2017 32

Vision Transformer (ViT)

Transformer Encoder

A 1
(D—

Vision Transformer (ViT)

Class

Bird MLP]
Ball
Car | Head

MLP
A

Norm

Transformer Encoder

i
I
I
I
I \ y
) 1 I
\ . 1
I L
. (5
" I
e~ @9 0 “ @15 @ﬁ i i |
I
I
L]
I
i

* Extra learnable
[Linear Projection of Flattened Patches A

[class] embedding
I I I I I I [Norm
1 T W all U LT e
| olFsheaisay s ‘IIII

Embedded
Patches

Figure reproduced from Dosovitskiy et al.

Dosovitskiy et al. An image is worth 16x16 words: Transformers for

image recognition at scale, ICLR 2021 >

Transformers and Attention — Practical

Goals:

1. Implementing a Transformer encoder from scratch (following the architecture
introduced in the Attention is all you need paper)

2. Understanding the involved computations

3. Building a full Deep Learning pipeline in PyTorch to train a model on a given
dataset

Vaswani et al. Attention is all you need, NeurlPS 2017 34

Add & Norm
Feed
Forward
Add & Norm
Multi-Head
Attention

N x

Positional
Encoding e &
INnput
Embedding

Inputs

