
Artificial Intelligence & Data Analysis
Lecture 1: Convolutional Neural Networks

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.

5

1

Reproduced from Krizhevsky et al.

Krizhevsky et al., ImageNet Classification with Deep Convolutional Neural Networks, NeurIPS 2012
Pierre Marza

About me
Pierre Marza: PhD student at INSA Lyon

Embodied AI, Visual NavigaJon, Deep Learning, Computer Vision, Reinforcement Learning

Teaching Agents how to Map: Spa@al Reasoning for Mul@-Object Naviga@on

Mul@-Object Naviga@on with dynamically
learned neural implicit representa@ons

AutoNeRF: Training Implicit Scene Representa@ons
with Autonomous Agents

fs xg

fo
θo

s fo
θo er

x

θs

Dec

(x, s)
1 2

3 4

2

Course Overview

1. Convolutional Neural Networks (Lecture + practical)
2. Recurrent Neural Networks (Lecture + optional practical)

3. Reinforcement Learning 1 (Johan Peralez)
4. Reinforcement Learning 2 (Johan Peralez)

5. Project (15h)

3

Evaluation

1. Project oral/written presentation

2. Final exam (Multiple-choice questions)

4

Useful resources

Ian Goodfellow, Yoshua Bengio, Aaron Courville, Deep Learning, 2017, MIT Press (https://www.deeplearningbook.org/)

Pytorch Tutorials: https://pytorch.org/tutorials/

Christopher M. Bishop, Pattern recognition and machine learning, 2006, Springer (Machine Learning resource, not
only Deep Learning)

Interesting read: Rich Sutton, The Bitter Lesson, 2019 (http://www.incompleteideas.net/IncIdeas/BitterLesson.html)

Some of the material of this course is inspired by the lectures given by Christian Wolf (my PhD advisor) at INSA Lyon.
You can find his full course here: https://chriswolfvision.github.io/www/teaching/index.html

5

https://www.deeplearningbook.org/
https://pytorch.org/tutorials/
http://www.incompleteideas.net/IncIdeas/BitterLesson.html
https://chriswolfvision.github.io/www/teaching/index.html

Artificial Intelligence

6

ArJficial
Intelligence

Artificial Intelligence

7

ArJficial
Intelligence

Machine
Learning

Artificial Intelligence

8

ArJficial
Intelligence

Machine
Learning

Deep
Learning

Artificial Intelligence

9

Deep
Learning

?

What is Deep Learning?

High-dimensional data

Image Video

Text Point-
cloud

10

What is Deep Learning?

High-dimensional data

Image Video

Text Point-
cloud

Deep Learning model

ArJficial Neural Network
Deep: many neural layers

11

What is Deep Learning?

High-dimensional data

Image Video

Text Point-
cloud

Deep Learning model

ArJficial Neural Network
Deep: many neural layers

Latent vector
representaJon

Extrac@ng useful features

12

What is Deep Learning?

Latent vector
representaJon

Classifica@on

Detec@on

Image Genera@on

Cat Dog

Cat (96%) Dog (99%)

An astronaut riding a horse
in photorealis@c style.

(Reproduced from DALLE 2 website)

Text Genera@on
(Reproduced from ChatGPT website)

13

What is Deep Learning?

14

What is an Artificial Neural Network?

Input Layer 1 Layer 2 Layer n… Output

- Parameters/Weights: each layer is composed of neurons that are
parametrized by weights that we want to optimize. This is the
learning part.

- Hyperparameters:
- Type and number of layers
- Number of neurons per layer
- Activation functions, etc.

What is Deep Learning?

15

Recap (?): The Linear Layer

Input

W1

W2

W3

X
W1X

 θ = {W1, W2, W3}

W2X

W3X

∑

∑

∑

What is Deep Learning?

16

Recap (?): The Linear Layer

Input

W1

W2

W3

X
W1X

 θ = {W1, W2, W3}

W2X

W3X

∑

∑

∑

But, here we can just learn a linear function () and not an affine
function () —> We need to add a bias term.

y = ax
y = ax + b

What is Deep Learning?

17

Recap (?): The Linear Layer

Input

W1

W2

X
W1X

 θ = {W1, W2, W3}

W2X

W3X

∑

∑

∑

What we often do is that we add a ‘1’ at the end of the input.

1

W3

What is Deep Learning?

18

Recap (?): Activation Functions

Input

W1

W2

W3

X
W1X

 θ = {W1, W2, W3}

W2X

W3X

∑

∑

∑

σ

σ

AcJvaJon
funcJon

σ

h1

h2

h3

 H = {h1, h2, h3}

Ac@va@on
Func@ons

Sigmoid

tanh

ReLU

What is Deep Learning?

19

Recap (?): Loss Functions
To train your neural network, you need to compare its output with the ground-
truth labels. This is where you need to use a loss function.

Example 1: Let’s consider you have training samples and are solving a regression
problem. For a given (input, ground-truth) pair (), the output of your neural
network is . Then, you can use the Mean Squared Error as your loss function:

n
Ii, Ti

̂ti

MSE =
1
n

n

∑
i=1

(Ti − ̂ti)2

What is Deep Learning?

20

Recap (?): Loss Functions
To train your neural network, you need to compare its output with the ground-truth labels. This
is where you need to use a loss function.

Example 2: Let’s consider you have training samples and are solving a classification problem
that involves classes. For a given (input, ground-truth) pair (), the output of your neural
network is . More specifically, for a given class , is a binary indicator of whether class is
the correct one for sample , and if the predicted probability for sample to belong to class .

Then, you can use the Cross-Entropy Loss as your loss function:

n
M Ii, Ti

̂ti c Ti,c c
i ̂ti,c i c

CE = −
1
n

N

∑
i=1

M

∑
c=1

Ti,c log (̂ti,c)

What is Deep Learning?

21

Recap (?): Loss Functions
To train your neural network, you need to compare its output with the ground-truth labels. This
is where you need to use a loss function.

Example 2: Let’s consider you have training samples and are solving a classification problem
that involves classes. For a given (input, ground-truth) pair (), the output of your neural
network is . More specifically, for a given class , is a binary indicator of whether class is
the correct one for sample , and if the predicted probability for sample to belong to class .

n
M Ii, Ti

̂ti c Ti,c c
i ̂ti,c i c

CE = −
1
n

N

∑
i=1

M

∑
c=1

Ti,c log (̂ti,c)
When solving a classification problem, the output of the neural network
will generally be a probability distribution over possible classes.

Standard Deep Learning Pipeline

22

1. Find a dataset, i.e. pairs of (input, output)

Cat

Cat

Cat

Cat

Cat

Cat

Dog

Dog

Dog

Dog

Dog

Dog

Dog

Train

Standard Deep Learning Pipeline

23

1. Find a dataset, i.e. pairs of (input, output)
2. Split your data into 3 sets: train, validation, test

Cat

Cat

Cat

Cat
Cat

Cat

DogDog

Dog
Dog

Dog

Dog

ValidaJon

Test

Test

To evaluate the final performance of you neural network (aker
hyper params have been chosen and weight values opJmised)

ValidaJon

To evaluate the choice of hyper parameters, e.g. number of layers,
neurons, type of acJvaJons, loss funcJons…

This set is very important: allows to evaluate the performance on data
not used during training but different from the final test set (to avoid

choosing hyper params that only work on this specific test set).

Train

To train your neural network, i.e. opJmise its weights/
parameters based on the difference between its predicJons

and ground-truth outputs.

Standard Deep Learning Pipeline

24

1. Find a dataset, i.e. pairs of (input, output)
2. Split your data into 3 sets: train, validation, test

Standard Deep Learning Pipeline

25

1. Find a dataset, i.e. pairs of (input, output)
2. Split your data into 3 sets: train, validation, test
3. Build your neural network (this process is often iterative based on validation performance).

1. Types of layers (linear, convolutional, recurrent, etc.)
2. Activation functions
3. Number of layers, neurons, etc.

Standard Deep Learning Pipeline

26

1. Find a dataset, i.e. pairs of (input, output)
2. Split your data into 3 sets: train, validation, test
3. Build your neural network (this process is often iterative based on validation performance).
4. Train your neural network

StochasJc Gradient Descent (SGD)
Epoch: a full iteraJon over your train set.
Training batch: a set of samples from the train set.

: neural network parametrised by weights .
: chosen loss funcJon (e.g. Cross-Entropy for classificaJon problems).

Iterate over epochs
Iterate over training batches

Sampling training batch from train set, where and are inputs and ground-truth outputs respecJvely.

Forward pass: , where is the predicJon from the neural network.

Error computa@on: , where is the error between the predicJons and the ground truth.
Backward pass: CompuJng gradient of with respect to network weights , and updaJng .

fθ θ
ℒ

n
m

ℬi = {Ii, Ti} Ii Ti
̂ti = fθ(Ii; θ) ̂ti

ei = ℒ(̂ti, Ti) ei
ei θ θ

Course Overview

1. Convolutional Neural Networks (Lecture + practical)
2. Recurrent Neural Networks (Lecture + optional practical)

3. Reinforcement Learning 1 (Johan Peralez)
4. Reinforcement Learning 2 (Johan Peralez)

5. Project (15h)

27

Course Overview

1. Convolutional Neural Networks (Lecture + practical)
2. Recurrent Neural Networks (Lecture + optional practical)

3. Reinforcement Learning 1 (Johan Peralez)
4. Reinforcement Learning 2 (Johan Peralez)

5. Project (15h)

28

Useful resources about CNNs

- AlexNet paper (winner of the Imagenet competition): Krizhevsky et al. ImageNet Classification with Deep
Convolutional Neural Networks, NeurIPS 2012

- ResNet paper (a method that is still used a lot in Computer Vision): He et al., Deep Residual Learning for Image
Recognition, CVPR 2016

- A nice blog post from my PhD advisor (Christian Wolf) about shift equivariance: https://
chriswolfvision.medium.com/what-is-translation-equivariance-and-why-do-we-use-convolutions-to-get-
it-6f18139d4c59

29

https://chriswolfvision.medium.com/what-is-translation-equivariance-and-why-do-we-use-convolutions-to-get-it-6f18139d4c59
https://chriswolfvision.medium.com/what-is-translation-equivariance-and-why-do-we-use-convolutions-to-get-it-6f18139d4c59
https://chriswolfvision.medium.com/what-is-translation-equivariance-and-why-do-we-use-convolutions-to-get-it-6f18139d4c59

Convolutional Neural Networks — Motivation

How to extract a feature representation of an image?

30

Convolutional Neural Networks — Motivation

How to extract a feature representation of an image?

Classifier
Feature

extractor
Latent vector

representaJon ‘cat’

?

31

Convolutional Neural Networks — Motivation

How to extract a feature representation of an image?

Classifier
Feature

extractor
Latent vector

representaJon ‘cat’

?

Before Deep Learning: SIFT, HoG features, etc.

32

Convolutional Neural Networks — Motivation

How to extract a feature representation of an image?

Classifier
Feature

extractor
Latent vector

representaJon ‘cat’

?

Before Deep Learning: SIFT, HoG features, etc.

Artificial Neural Network: Couldn’t we use a simple Multi-Layer Perceptron?

33

Convolutional Neural Networks — Motivation

Artificial Neural Network: Couldn’t we use a simple Multi-Layer Perceptron?

Answer: Maybe, but it can be hard to train… even sometimes impossible…

34

Flapening

Mul@-Layer PerceptronPixels vector

W1

W2

W3

X
W1X

 θ = {W1, W2, W3}

W2X

W3X

∑

∑

∑

Convolutional Neural Networks — Motivation

Artificial Neural Network: Couldn’t we use a simple Multi-Layer Perceptron?

Answer: Maybe, but it can be hard to train… even sometimes impossible…

35

Flapening

Mul@-Layer PerceptronPixels vector

W1

W2

W3

X
W1X

 θ = {W1, W2, W3}

W2X

W3X

∑

∑

∑

σ

σ

AcJvaJon
funcJon

σ

h1

h2

h3

 H = {h1, h2, h3}

Convolutional Neural Networks — Motivation

Artificial Neural Network: Couldn’t we use a simple Multi-Layer Perceptron?

Answer: Maybe, but it can be hard to train… even sometimes impossible…

36

Flapening

Mul@-Layer PerceptronPixels vector

W1

W2

W3

X
W1X

 θ = {W1, W2, W3}

W2X

W3X

∑

∑

∑

σ

σ

AcJvaJon
funcJon

σ

h1

h2

h3

 H = {h1, h2, h3}

Ac@va@on
Func@ons

Sigmoid

tanh

ReLU

Convolutional Neural Networks — Motivation

Artificial Neural Network: Couldn’t we use a simple Multi-Layer Perceptron?

Answer: Maybe, but it can be hard to train… even sometimes impossible…

37

Flapening

Mul@-Layer PerceptronPixels vector

W1

W2

W3

X
W1X

 , , θ = {W1, W2, W3 W4 W5}

W2X

W3X

∑

∑

∑

σ

σ

AcJvaJon
funcJon

σ

h1

h2

h3

W4
∑

W5
∑

W4H

W5H

σ

σ

y1

y2

 H = {h1, h2, h3}

Convolutional Neural Networks — Motivation

38

Issues with MLP

- Spatial information is lost when flattening the image. We loose information about
whether a given input pixel was close to others in the original image.

Convolutional Neural Networks — Motivation

39

Issues with MLP

- Spatial information is lost when flattening the image. We loose information about
whether a given input pixel was close to others in the original image.

- The number of parameters to learn quickly grows with the size of the input image.

If we have a 224*224*3 input image —> 150528 input values

Now let’s say we want a single linear layer with 256 neurons
—> 256*(150528 + 1) = 38535424 ~ 38M parameters for a single layer!

Bias term

Convolutional Neural Networks — Motivation

40

Issues with MLP

- Spatial information is lost when flattening the image. We loose information about
whether a given input pixel was close to others in the original image.

- The number of parameters to learn quickly grows with the size of the input image.

- It is not translation invariant (outputs a different representation for a given input
image and its shifted version)

Convolutional Neural Networks — Motivation

Inductive biases:

- The set of assumptions about the target function to approximate.

- A way to constrain the search space for suitable functions.

- Incorporates prior knowledge about the task to solve.

41

Convolutional Neural Networks — Motivation

Inductive biases:

- The set of assumptions about the target function to approximate.

- A way to constrain the search space for suitable functions.

- Incorporates prior knowledge about the task to solve.

There are 2 important inductive biases when dealing with images:

- Locality: pixels spatially close share information

- Translation equivariance

42

Convolutional Neural Networks — Motivation

An operation is known to be shift/translation equivariant if, given an
input and a translation operator , we have the following:

Why is it interesting? If we consider shifting an image slightly, we might
want the final pixel-wise representation of this image to be the same, just
translated by the applied shift.

ϕ
X T

ϕ(T(X)) = T(ϕ(X))

43

Convolutional Neural Networks — Standard Architecture

44

ConvoluJon Pooling ConvoluJon Pooling…
Latent vector

representaJon

Two important operations:
1. Convolution
2. Pooling

Convolutional Neural Networks — Convolution

45

Channel 0 (e.g. R in RGB)

Channel 1 (e.g. G in RGB)

Channel 2 (e.g. B in RGB)

Let’s consider an input tensor with size ,
- is the height (in the example below)
- is the width (in the example below)
- is the number of channels (in the example below as is the case for an RGB image)

H × W × C
H H = 5
W W = 5
C C = 3

Input tensor
(, ,)H = 5 W = 5 C = 3

4 112 34 20 5

55 40 1 8 27

70 87 2 190 25

240 101 67 42 12

44 109 4 1 87

25 37 115 60 88

177 24 37 92 145

15 50 108 124 44

5 71 133 74 58

27 39 82 118 243

12 250 194 145 117

37 26 129 107 99

87 75 60 191 230

20 11 48 61 72

87 33 71 48 100

Convolutional Neural Networks — Convolution

46

Channel 0 (e.g. R in RGB)

Channel 1 (e.g. G in RGB)

Channel 2 (e.g. B in RGB)

Let’s consider a convolution kernel with size ,
- is the height (in the example below)
- is the width (in the example below)
- is the number of channels (in the example below to match input channels)

H × W × C
H H = 3
W W = 3
C C = 3

Input tensor
(, ,)H = 5 W = 5 C = 3

Convolution kernel
(, ,)H = 3 W = 3 C = 3

4 112 34 20 5

55 40 1 8 27

70 87 2 190 25

240 101 67 42 12

44 109 4 1 87

25 37 115 60 88

177 24 37 92 145

15 50 108 124 44

5 71 133 74 58

27 39 82 118 243

12 250 194 145 117

37 26 129 107 99

87 75 60 191 230

20 11 48 61 72

87 33 71 48 100

3 2 4

0 1 8

2 7 6

5 9 8

3 4 1

1 2 7

7 2 6

8 9 3

4 4 5

Convolutional Neural Networks — Convolution

47

4 112 34 20 5

55 40 1 8 27

70 87 2 190 25

240 101 67 42 12

44 109 4 1 87

25 37 115 60 88

177 24 37 92 145

15 50 108 124 44

5 71 133 74 58

27 39 82 118 243

12 250 194 145 117

37 26 129 107 99

87 75 60 191 230

20 11 48 61 72

87 33 71 48 100

Channel 0 (e.g. R in RGB)

Channel 1 (e.g. G in RGB)

Channel 2 (e.g. B in RGB)

Input tensor
(, ,)H = 5 W = 5 C = 3

Convolution kernel
(, ,)H = 3 W = 3 C = 3

3 2 4

0 1 8

2 7 6

5 9 8

3 4 1

1 2 7

7 2 6

8 9 3

4 4 5

∗

∗

∗
ConvoluJon

operaJon

25*5 + 37*9 + 115*8
+ 177*3 + 24*4 + 37*1
+ 15*1 + 50*2 + 108*7

= 2913

= 468

=

4*3 + 112*2 + 34*4
+ 55*0 + 40*1 + 1*8
+ 70*2 + 87*7 + 2*6

12*7 + 250*2 + 194*6
+ 37*8 + 26 *9 + 129*3
+ 87*4 + 75*4 + 60*5

3613

Convolutional Neural Networks — Convolution

48

4 112 34 20 5

55 40 1 8 27

70 87 2 190 25

240 101 67 42 12

44 109 4 1 87

25 37 115 60 88

177 24 37 92 145

15 50 108 124 44

5 71 133 74 58

27 39 82 118 243

12 250 194 145 117

37 26 129 107 99

87 75 60 191 230

20 11 48 61 72

87 33 71 48 100

Channel 0 (e.g. R in RGB)

Channel 1 (e.g. G in RGB)

Channel 2 (e.g. B in RGB)

Input tensor
(, ,)H = 5 W = 5 C = 3

Convolution kernel
(, ,)H = 3 W = 3 C = 3

3 2 4

0 1 8

2 7 6

5 9 8

3 4 1

1 2 7

7 2 6

8 9 3

4 4 5

∗

∗

∗
ConvoluJon

operaJon

= 2913

= 468

= 3613

6994

=

Output tensor
(, ,)H = 3 W = 3 C = 1

+

+

Convolutional Neural Networks — Convolution

49

4 112 34 20 5

55 40 1 8 27

70 87 2 190 25

240 101 67 42 12

44 109 4 1 87

25 37 115 60 88

177 24 37 92 145

15 50 108 124 44

5 71 133 74 58

27 39 82 118 243

12 250 194 145 117

37 26 129 107 99

87 75 60 191 230

20 11 48 61 72

87 33 71 48 100

Channel 0 (e.g. R in RGB)

Channel 1 (e.g. G in RGB)

Channel 2 (e.g. B in RGB)

Input tensor
(, ,)H = 5 W = 5 C = 3

Convolution kernel
(, ,)H = 3 W = 3 C = 3

3 2 4

0 1 8

2 7 6

5 9 8

3 4 1

1 2 7

7 2 6

8 9 3

4 4 5

∗

∗

∗
ConvoluJon

operaJon

= 2913

= 468

= 3613

6994

=

Output tensor
(, ,)H = 3 W = 3 C = 1

+

+

We will call such
tensor a feature map

Convolutional Neural Networks — Convolution

50

4 112 34 20 5

55 40 1 8 27

70 87 2 190 25

240 101 67 42 12

44 109 4 1 87

25 37 115 60 88

177 24 37 92 145

15 50 108 124 44

5 71 133 74 58

27 39 82 118 243

12 250 194 145 117

37 26 129 107 99

87 75 60 191 230

20 11 48 61 72

87 33 71 48 100

Channel 0 (e.g. R in RGB)

Channel 1 (e.g. G in RGB)

Channel 2 (e.g. B in RGB)

Input tensor
(, ,)H = 5 W = 5 C = 3

Convolution kernel
(, ,)H = 3 W = 3 C = 3

3 2 4

0 1 8

2 7 6

5 9 8

3 4 1

1 2 7

7 2 6

8 9 3

4 4 5

∗

∗

∗
ConvoluJon

operaJon

=

Output tensor
(, ,)H = 3 W = 3 C = 1

Horizontal stride = 1

Additional to the kernel size (), there is another important
hypeparamater of the convolution kernel: the stride, i.e. by how much to slide the
kernel. In the example below, horizontal and vertical strides are set to 1.

H × W × C

Convolutional Neural Networks — Convolution

51

4 112 34 20 5

55 40 1 8 27

70 87 2 190 25

240 101 67 42 12

44 109 4 1 87

25 37 115 60 88

177 24 37 92 145

15 50 108 124 44

5 71 133 74 58

27 39 82 118 243

12 250 194 145 117

37 26 129 107 99

87 75 60 191 230

20 11 48 61 72

87 33 71 48 100

Channel 0 (e.g. R in RGB)

Channel 1 (e.g. G in RGB)

Channel 2 (e.g. B in RGB)

Input tensor
(, ,)H = 5 W = 5 C = 3

Convolution kernel
(, ,)H = 3 W = 3 C = 3

3 2 4

0 1 8

2 7 6

5 9 8

3 4 1

1 2 7

7 2 6

8 9 3

4 4 5

∗

∗

∗
ConvoluJon

operaJon

=

Output tensor
(, ,)H = 3 W = 3 C = 1

Additional to the kernel size (), there is another important
hypeparamater of the convolution kernel: the stride, i.e. by how much to slide the
kernel. In the example below, horizontal and vertical strides are set to 1.

H × W × C

Convolutional Neural Networks — Convolution

52

4 112 34 20 5

55 40 1 8 27

70 87 2 190 25

240 101 67 42 12

44 109 4 1 87

25 37 115 60 88

177 24 37 92 145

15 50 108 124 44

5 71 133 74 58

27 39 82 118 243

12 250 194 145 117

37 26 129 107 99

87 75 60 191 230

20 11 48 61 72

87 33 71 48 100

Channel 0 (e.g. R in RGB)

Channel 1 (e.g. G in RGB)

Channel 2 (e.g. B in RGB)

Input tensor
(, ,)H = 5 W = 5 C = 3

Convolution kernel
(, ,)H = 3 W = 3 C = 3

3 2 4

0 1 8

2 7 6

5 9 8

3 4 1

1 2 7

7 2 6

8 9 3

4 4 5

∗

∗

∗
ConvoluJon

operaJon

=

Output tensor
(, ,)H = 3 W = 3 C = 1

Vertical stride = 1

Additional to the kernel size (), there is another important
hypeparamater of the convolution kernel: the stride, i.e. by how much to slide the
kernel. In the example below, horizontal and vertical strides are set to 1.

H × W × C

Convolutional Neural Networks — Convolution

53

4 112 34 20 5

55 40 1 8 27

70 87 2 190 25

240 101 67 42 12

44 109 4 1 87

25 37 115 60 88

177 24 37 92 145

15 50 108 124 44

5 71 133 74 58

27 39 82 118 243

12 250 194 145 117

37 26 129 107 99

87 75 60 191 230

20 11 48 61 72

87 33 71 48 100

Channel 0 (e.g. R in RGB)

Channel 1 (e.g. G in RGB)

Channel 2 (e.g. B in RGB)

Input tensor
(, ,)H = 5 W = 5 C = 3

Convolution kernel
(, ,)H = 3 W = 3 C = 3

3 2 4

0 1 8

2 7 6

5 9 8

3 4 1

1 2 7

7 2 6

8 9 3

4 4 5

∗

∗

∗
ConvoluJon

operaJon

=

Output tensor
(, ,)H = 3 W = 3 C = 1

Additional to the kernel size (), there is another important
hypeparamater of the convolution kernel: the stride, i.e. by how much to slide the
kernel. In the example below, horizontal and vertical strides are set to 1.

H × W × C

Convolutional Neural Networks — Convolution

54

4 112 34 20 5

55 40 1 8 27

70 87 2 190 25

240 101 67 42 12

44 109 4 1 87

25 37 115 60 88

177 24 37 92 145

15 50 108 124 44

5 71 133 74 58

27 39 82 118 243

12 250 194 145 117

37 26 129 107 99

87 75 60 191 230

20 11 48 61 72

87 33 71 48 100

Channel 0 (e.g. R in RGB)

Channel 1 (e.g. G in RGB)

Channel 2 (e.g. B in RGB)

Input tensor
(, ,)H = 5 W = 5 C = 3

Another hyper parameter of the convolution layer is padding. Sometimes you
might want to pad the input tensor with a border of zeros, e.g. to avoid border
values in the input to be less important in the final result. The width of this border
is called the padding size.

Padding (padding size = 1)

0 0 0 0 0 0 0

0 4 112 34 20 5 0

0 55 40 1 8 27 0

0 70 87 2 190 25 0

0 240 101 67 42 12 0

0 44 109 4 1 87 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 25 37 115 60 88 0

0 177 24 37 92 145 0

0 15 50 108 124 44 0

0 5 71 133 74 58 0

0 27 39 82 118 243 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 12 250 194 145 117 0

0 37 26 129 107 99 0

0 87 75 60 191 230 0

0 20 11 48 61 72 0

0 87 33 71 48 100 0

0 0 0 0 0 0 0

Convolutional Neural Networks — Convolution

55

- All weights in a convolutional kernel are learnt.

- CNN is parameter efficient: weights are shared across the whole
input (only sliding the kernel with fixed weights). Much better than
our MLP!

Convolutional Neural Networks — Convolution

56

- All weights in a convolutional kernel are learnt.

- CNN is parameter efficient: weights are shared across the whole
input (only sliding the kernel with fixed weights). Much better than
our MLP!

- One kernel provides one scalar for each position in the output
tensor.

- To increase the capacity of a convolutional layer, we learn several
kernels (output channel dimension is equal to the number of
kernels).

Convolutional Neural Networks — Convolution

57

ConvoluJon

Feature Map

Number of kernels
in convolution layer

ConvoluJon …

Convolutional Neural Networks — Convolution

58

ConvoluJon

Feature Map

Number of kernels
in convolution layer

ConvoluJon …

But, CNNs are not only a sequence of convolution layers! There is another operation involved: pooling.

Convolutional Neural Networks — Pooling

59

- The pooling operation allows to reduce the spatial resolution of a tensor.
- This is a non-learned operation, i.e. not parametrized by any learnable weight.

- Sliding a kernel as for the convolution operation, but instead of computing the
weighted sum of inputs, it takes:
- The max value (Max Pooling)
- The min value (Min Pooling)
- The average value (Mean Pooling)

4 112 34 20

55 40 1 8

70 87 2 190

240 101 67 42

4 112 34 20

55 40 1 8

70 87 2 190

240 101 67 42

4 112 34 20

55 40 1 8

70 87 2 190

240 101 67 42

4 112 34 20

55 40 1 8

70 87 2 190

240 101 67 42

Example of Max Pooling Operation with kernel size and stride (both horizontal and vertical strides):2 × 2 2

112 34

240 190

Convolutional Neural Networks — Pooling

60

Why do we need pooling?

1. Makes the network less sensitive to small shifts in the input by
discarding some non-important details. Pooling provides a form of local
shift invariance.

2. With lower resolution maps, convolution computations are faster.

3. Increases the size of the receptive field of each neuron.

Convolutional Neural Networks — Pooling

61

The receptive field of a neuron is the part of the input image that brings
information to the given neuron.

By applying a pooling operation, i.e. downsampling a feature map, we
increase the receptive field of next neurons.

Input image Output from
layer 1

Output from
layer 2

Convolutional Neural Networks — Standard Architectures

62

LeNet, 1998
AlexNet, 2012

Winning entry in the Imagenet
 Competition

VGG, 2014
Deeper Network

ResNet, 2015
Even deeper thanks to residual connections

Convolutional Neural Networks — Practical

63

CIFAR-10

Goals:
1. Implementing a Convolutional Neural Network
2. Understanding the involved computations
3. Building a full Deep Learning pipeline in PyTorch to train a model on a given dataset

