Lecture 1: Convolutional Neural Networks

224

Reproduced from Krizhevsky et al.

Krizhevsky et al., ImageNet Classification with Deep Convolutional Neural Networks, NeurlIPS 2012 1

N ‘ 3\ |
1o 3)
SN g 3
e 192 192
>7 128 T
\ e [13‘\\::‘\:\\\\\ 13
3 ENNy
__________ 3| N 3
B35 ~ —
27 3\ AN
n A\
192 192
Max 128 Max
pooling pooling

Artificial Intelligence & Data Analysis

L 5y —
58 2048 048 \dense
13
———> —— —>
13 dense dense
1000
128 Max
pooling 2948 2048

Pierre Marza

About me

Pierre Marza: PhD student at INSA Lyon
Embodied Al, Visual Navigation, Deep Learning, Computer Vision, Reinforcement Learning

Observations A Predicted Semantic Map

7: oven 11: clock

1: couch 5:tv 9: refnigerator 13: cup
2: potted plant 6: dining-table 10: book 14: bottle

Autonomous explorative rollout
(x,s)

— @-.e

AutoNeRF: Training Implicit Scene Representations
with Autonomous Agents

Multi-Object Navigation with dynamically
learned neural implicit representations 2

Course Overview

Convolutional Neural Networks (Lecture + practical)
Recurrent Neural Networks (Lecture + optional practical)

1.

2

3. Reinforcement Learning 1 (Johan Peralez)
4. Reinforcement Learning 2 (Johan Peralez)
5

Project (15h)

Evaluation

1. Project oral/written presentation

2. Final exam (Multiple-choice questions)

Useful resources

lan Goodfellow, Yoshua Bengio, Aaron Courville, Deep Learning, 2017, MIT Press (https://www.deeplearningbook.org/)

Pytorch Tutorials: https://pytorch.org/tutorials/

Christopher M. Bishop, Pattern recognition and machine learning, 2006, Springer (Machine Learning resource, not
only Deep Learning)

Interesting read: Rich Sutton, The Bitter Lesson, 2019 (http://www.incompleteideas.net/Incldeas/BitterLesson.html)

Some of the material of this course is inspired by the lectures given by Christian Wolf (my PhD advisor) at INSA Lyon.
You can find his full course here: https://chriswolfvision.github.io/www/teaching/index.html

https://www.deeplearningbook.org/
https://pytorch.org/tutorials/
http://www.incompleteideas.net/IncIdeas/BitterLesson.html
https://chriswolfvision.github.io/www/teaching/index.html

Artificial
Intelligence

Artificial
Intelligence

Machine
Learning

Artificial
Intelligence

Machine
Learning

Deep
Learning

Deep
Learning

?

What is Deep Learning?

High-dimensional data

M

Text Point-
cloud

10

What is Deep Learning?

Deep Learning model
High-dimensional data

Artificial Neural Network

_ Deep: many neural layers
M

Text Point-
cloud

11

What is Deep Learning?

Deep Learning model

High-dimensional data

Artificial Neural Network
_ Deep: many neural layers
Video Latent vector
—_— .
representation
Text Point- * Extracting useful features
cloud ‘ ;

12

What is Deep Learning?

Image Generation

e

Classification

An astronaut riding a horse

in photorealistic style. |
(Reproduced from DALLE 2 website) representation

Latent vector

what is the fermat’s little theorem

Fermat’s Little Theorem states that if p is a prime number and a is an integer not divisible by p,

then a”a (a to the power p) is congruent to a modulo p. In other words, if we divide a” by p, the
remainder is always a.

For example, if p = 5 and a = 2, then 2° = 32, and 32 divided by 5 has a remainder of 2. Therefore,
2% is congruent to 2 modulo 5, and Fermat’s Little Theorem holds for this case.

"1 cat (96%)

Fermat’s Little Theorem is often used in cryptography and other applications where it is
necessary to perform modular arithmetic operations quickly and efficiently. It is also a useful tool

for proving other theorems in number theory Dete cti O n
(Reproduced from ChatGPT website)

Text Generation

13

What is Deep Learning?

What is an Artificial Neural Network?

- Parameters/Weights: each layer is composed of neurons that are
parametrized by weights that we want to optimize. This is the

learning part.

- Hyperparameters:
- Type and number of layers
- Number of neurons per layer
- Activation functions, etc.

14

What is Deep Learning?

Recap (?): The Linear Layer

O0O00O0000000000 »<
M
=
S

Input o= 1{Ww, W, W}

15

What is Deep Learning?

Recap (?): The Linear Layer

O0O00O0000000000 »<
M
=
S

Input o= 1{Ww, W, W}

But, here we can just learn a linear function (y = ax) and not an affine
function (y = ax + b) —> We need to add a bias term.

16

What is Deep Learning?

Recap (?): The Linear Layer

-
T [=]|O000000000000 <

What we often do is that we add a ‘1’ at the end of the input.

17

What is Deep Learning?

Recap (?): Activation Functions

Activation
Functions
X Activation H:{ s 1y }
function 2 06
E o WX Sigmoid ...
O
]
s> ., =
0 . P
: DM
]
E WX tanh
m = d
]
Input

RelU

18

|||||||||

What is Deep Learning?

Recap (?): Loss Functions

To train your neural network, you need to compare its output with the ground-
truth labels. This is where you need to use a loss function.

Example 1: Let’s consider you have 7 training samples and are solving a regression
problem. For a given (input, ground-truth) pair (/;, 1), the output of your neural

network is fl-. Then, you can use the Mean Squared Error as your loss function:

n

MSE =~ Y (T - 7,)’

n
=1

19

What is Deep Learning?

Recap (?): Loss Functions

To train your neural network, you need to compare its output with the ground-truth labels. This
Is where you need to use a loss function.

Example 2: Let’s consider you have n training samples and are solving a classification problem
that involves M classes. For a given (input, ground-truth) pair (Z;, 1), the output of your neural

network is fl-. More specifically, for a given class c, T - is a binary indicator of whether class c is
the correct one for sample i, and fl- . if the predicted probablllty for sample i to belong to class c.

Then, you can use the Cross-Entropy Loss as your loss function:

:——ZZ Jlog (7;)

=1 c=1

20

What is Deep Learning?

Recap (?): Loss Functions

To train your neural network, you need to compare its output with the ground-truth labels. This
Is where you need to use a loss function.

Example 2: Let’s consider you have 7 training samples and are solving a classification problem
that involves M classes. For a given (input, ground-truth) pair (Z;, 1), the output of your neural

network is fl-. More specifically, for a given class c, Tl-,c IS a binary indicator of whether class c is
the correct one for sample i, and fl- - if the predicted probability for sample 1 to belong to class c.

!

When solving a classification problem, the output of the neural network
will generally be a probability distribution over possible classes.

21

Standard Deep Learning Pipeline

1. Find a dataset, i.e. pairs of (input, output)

Cat

Standard Deep Learning Pipeline

1. Find a dataset, i.e. pairs of (input, output) Validaton
2. Split your data into 3 sets: train, validation, test R4k

23

Standard Deep Learning Pipeline

1. Find a dataset, i.e. pairs of (input, output) Validation

2. Split your data into 3 sets: train, validation, test
To evaluate the choice of hyper parameters, e.g. number of layers,

neurons, type of activations, loss functions...
This set is very important: allows to evaluate the performance on data
not used during training but different from the final test set (to avoid
choosing hyper params that only work on this specific test set).

To train your neural network, i.e. optimise its weights/
parameters based on the difference between its predictions
and ground-truth outputs.

To evaluate the final performance of you neural network (after
hyper params have been chosen and weight values optimised)

24

Standard Deep Learning Pipeline

1. Find a dataset, i.e. pairs of (input, output)

2. Split your data into 3 sets: train, , test

3. Build your neural network (this process is often iterative based on
1. Types of layers (linear, convolutional, recurrent, etc.)
2. Activation functions
3. Number of layers, neurons, etc.

25

Standard Deep Learning Pipeline

Find a dataset, i.e. pairs of (input, output)

Split your data into 3 sets: train, , test

Build your neural network (this process is often iterative based on).
Train your neural network

P wWwnNE

Stochastic Gradient Descent (SGD)
Epoch: a full iteration over your train set.
Training batch: a set of samples from the train set.

o: neural network parametrised by weights 0.

Z: chosen loss function (e.g. Cross-Entropy for classification problems).

Iterate over n epochs
Iterate over m training batches

Sampling training batch 93, = {[,, T:} from train set, where /. and T’ are inputs and ground-truth outputs respectively.
Forward pass: f; = f,(/; 0), where 7. is the prediction from the neural network.

Error computation: ¢; = Z(,,,T.) where ¢, is the error between the predictions and the ground truth.
Backward pass: Computing gradient of ¢; with respect to network weights @, and updating 6.

26

Course Overview

Convolutional Neural Networks (Lecture + practical)
Recurrent Neural Networks (Lecture + optional practical)

1.

2

3. Reinforcement Learning 1 (Johan Peralez)
4. Reinforcement Learning 2 (Johan Peralez)
5

Project (15h)

27

Course Overview

Convolutional Neural Networks (Lecture + practical)
Recurrent Neural Networks (Lecture + optional practical)

1.

2

3. Reinforcement Learning 1 (Johan Peralez)
4. Reinforcement Learning 2 (Johan Peralez)
5

Project (15h)

28

Useful resources about CNNs

AlexNet paper (winner of the Imagenet competition): Krizhevsky et al. ImageNet Classification with Deep
Convolutional Neural Networks, NeurlPS 2012

ResNet paper (a method that is still used a lot in Computer Vision): He et al., Deep Residual Learning for Image
Recognition, CVPR 2016

- A nice blog post from my PhD advisor (Christian Wolf) about shift equivariance: https://

chriswolfvision.medium.com/what-is-translation-equivariance-and-why-do-we-use-convolutions-to-get-
it-6f18139d4c59

29

https://chriswolfvision.medium.com/what-is-translation-equivariance-and-why-do-we-use-convolutions-to-get-it-6f18139d4c59
https://chriswolfvision.medium.com/what-is-translation-equivariance-and-why-do-we-use-convolutions-to-get-it-6f18139d4c59
https://chriswolfvision.medium.com/what-is-translation-equivariance-and-why-do-we-use-convolutions-to-get-it-6f18139d4c59

Convolutional Neural Networks — Motivation

How to extract a feature representation of an image?

30

Convolutional Neural Networks — Motivation

How to extract a feature representation of an image?

— —l -y ‘cat’

31

Convolutional Neural Networks — Motivation

How to extract a feature representation of an image?

— —l -y ‘cat’

Before Deep Learning: SIFT, HoG features, etc.

32

Convolutional Neural Networks — Motivation

How to extract a feature representation of an image?

— —l -y ‘cat’

Before Deep Learning: SIFT, HoG features, etc.

Artificial Neural Network: Couldn’t we use a simple Multi-Layer Perceptron?

33

Convolutional Neural Networks — Motivation

Artificial Neural Network: Couldn’t we use a simple Multi-Layer Perceptron?

Answer: Maybe, but it can be hard to train... even sometimes impossible...

X
Ll
o o\ WX
L
u
L
C] W, X
—_— — 5)
Ll
Ll
E > WX
[

Pixels vector Multi-Layer Perceptron

0 =W, W, Wi

34

Convolutional Neural Networks — Motivation

Artificial Neural Network: Couldn’t we use a simple Multi-Layer Perceptron?

Answer: Maybe, but it can be hard to train... even sometimes impossible...

X Activation H:{ s 110 }
function

]
] 5) o
]
]
]
] W, X

- — O = o
]
L]
0} WX
0 > g
L]

Pixels vector Multi-Layer Perceptron

0 =W, W, Wi

35

Convolutional Neural Networks — Motivation

Artificial Neural Network: Couldn’t we use a simple Multi-Layer Perceptron?

Activation
Answer: Maybe, but it can be hard to train... even sometimes impossible... Functions
X Activation H = s 10, s}
function oo
H oy WX ; Sigmoid ...
L]
L]
L]
] W, X
—_— — 5 > o
u
E WX tanh
] 2 g
[
Pixels vector Multi-Layer Perceptron

0 =W, W, Wi

RelU

36

Convolutional Neural Networks — Motivation

Artificial Neural Network: Couldn’t we use a simple Multi-Layer Perceptron?

Answer: Maybe, but it can be hard to train... even sometimes impossible...

X Activation H:{ s 110 }
function

]
] 5) o
]
]
]
] W, X

- — O = o
]
L]
0} WX
0 > g
L]

Pixels vector Multi-Layer Perceptron

0= (W, W,, W3, Wy, Ws}

37

W, H

W<H

Convolutional Neural Networks — Motivation

Issues with VMILP

- Spatial information is lost when flattening the image. We loose information about
whether a given input pixel was close to others in the original image.

38

Convolutional Neural Networks — Motivation

Issues with VMILP

- Spatial information is lost when flattening the image. We loose information about
whether a given input pixel was close to others in the original image.

- The number of parameters to learn quickly grows with the size of the input image.

If we have a 224*224*3 input image —> 150528 input values

Now let’s say we want a single linear layer with 256 neurons
—>256%(150528 + 1) = 38535424 ~ 38M parameters for a single layer!

/

Bias term

39

Convolutional Neural Networks — Motivation

Issues with VMILP

- Spatial information is lost when flattening the image. We loose information about
whether a given input pixel was close to others in the original image.

- The number of parameters to learn quickly grows with the size of the input image.

- Itis not translation invariant (outputs a different representation for a given input
image and its shifted version)

40

Convolutional Neural Networks — Motivation

Inductive biases:
- The set of assumptions about the target function to approximate.
- A way to constrain the search space for suitable functions.

- Incorporates prior knowledge about the task to solve.

41

Convolutional Neural Networks — Motivation

Inductive biases:
- The set of assumptions about the target function to approximate.
- A way to constrain the search space for suitable functions.

- Incorporates prior knowledge about the task to solve.

There are 2 important inductive biases when dealing with images:
- Locality: pixels spatially close share information

- Translation equivariance

42

Convolutional Neural Networks — Motivation

An operation @ is known to be shift/translation equivariant if, given an
input X and a translation operator 7, we have the following:

P(1(X)) = T(p(X))
Why is it interesting? If we consider shifting an image slightly, we might

want the final pixel-wise representation of this image to be the same, just
translated by the applied shift.

43

Convolutional Neural Networks — Standard Architecture

Two iImportant operations:
1. Convolution
2. Pooling

—» [Gorvotion| — [Feoire] — . — [Comvauton] — [Foaive] —»

44

Convolutional Neural Networks — Convolution

Let’s consider an input tensor with size H X W X C,

(H =13,

Channel O (e.g. R in RGB)

Channel 1 (e.g. G in RGB)

Channel 2 (e.g. B in RGB)

H is the height (H = 5int
Wis the width (W = 5int
(' is the number of channe

Input tensor

W=35,C=3)

ne example below)
ne example below)

112

34

20

5

55

40

1

8

27

70

87

2

190

25

240

101

67

42

12

44

109

4

87

25

37

115

60

88

177

24

37

92

145

15

50

108

124

44

71

133

74

58

27

39

82

118

243

12

250

194

145

117

37

26

129

107

99

87

75

60

191

230

20

11

48

61

72

87

33

71

48

100

s (C = 3 in the example below as is the case for an RGB image)

45

Convolutional Neural Networks — Convolution

Let’s consider a convolution kernel with size H X W X C,

- Histhe height (H = 3 in the example below)

- Wisthe width (W = 3 in the example below)

- (Cis the number of channels (C = 3 in the example below to match input channels)

Input tensor Convolution kernel

(H=5W=)5,C =3) (H=3,W=3,C =3)

112 | 34 20 5

55 | 40 | 1 | 8 | 27 3 | 2| 4
Channel O (eg Rin RGB) 70 | 87 | 2 |19 | 25 o | 1| 8
240 | 101 | 67 | 42 | 12 2 | 7| s

44 | 109 4 1 87

25 37 | 115 | 60 88

177 | 24 37 92 145 5 9 8
Channel 1 (e.g. GiNn RGB) | 15| 50 | 108 | 124 | s 3 |4 |1
5 71 133 | 74 58 1 2 7

27 39 82 | 118 | 243

12 | 250 | 194 | 145 | 117

37 26 129 | 107 | 99 7 2 6
Channel 2 (e.g. Bin RGB) | & | 75 | 60 | 191 230 s |9 | 3
20 11 48 61 72 4 4 5

87 33 71 48 | 100

46

Convolutional Neural Networks — Convolution

Convolution kernel

Input tensor
(H=5 W=)5,C=23)
4 20 | s
g | 27
Channel O (e.g. R in RGB) 190 | 25 %
20 | 101 | 67 | 42 | 12
s 100 a | 1|8
60 | s8
% | 145
Channel 1 (e.g. G in RGB) 124 | 44 %k
s | 71 133 | 74 | ss
27 | 30 | 82 | 118 | 243
145 | 117
107 | 88
Channel 2 (e.g. B in RGB) 191 | 230 sk
20 | 11 |48 | 61 | 7
Convolution
S I A W operation

47

(H=3,W=3,C =3)

468 <

2913 <

4*%3 +112%*%2 + 34*4
+ 55*0+40*1 + 1*8
+ 70*2 + 87*7 + 2*6

3613 <«

25*5+37*9 + 115*8
+ 177*3 +24*4 +37*1
+ 15*1 +50*2 + 108*7

12*7 + 250*2 + 194*6
+ 37*8 +26 *9 + 129*3
+ 87*4 +75*4 + 60*5

Convolutional Neural Networks — Convolution

Channel O (e.g. Rin RGB)

Channel 1 (e.g. G in RGB)

Channel 2 (e.g. B in RGB)

Input tensor

(H=5W=)5,C =3)

5

27

240

101

190

25

42

12

44

109

87

60

88

92

145

71

133

124

44

74

58

27

39

82

118

243

145

117

107

99

20

11

48

191

230

61

72

87

33

71

48

100

Convolution kernel

K

Convolution
operation

3

2

4

0

1

8

2

7

6

(o]

(H=3,W=3,C =3)

4638

2913

3613

48

Output tensor

(H=3,W=3,C=1)

6994

Convolutional Neural Networks — Convolution

Channel O (e.g. Rin RGB)

Channel 1 (e.g. G in RGB)

Channel 2 (e.g. B in RGB)

Input tensor

(H=5W=)5,C =3)

5

27

240

101

190

25

42

12

44

109

87

60

88

92

145

71

133

124

44

74

58

27

39

82

118

243

145

117

107

99

20

11

48

191

230

61

72

87

33

71

48

100

Convolution kernel

K

Convolution
operation

3

2

4

0

1

8

2

7

6

(o]

(H=3,W=3,C =3)

4638

2913

3613

49

Output tensor

(H=3,W=3,C=1)

6994

We will call such
tensor a feature map

.-

Convolutional Neural Networks — Convolution

Additional to the kernel size (H X W X (), there is another important
hypeparamater of the convolution kernel: the stride, i.e. by how much to slide the
kernel. In the example below, horizontal and vertical strides are set to 1.

Input tensor Convolution kernel Output tensor
(H=5W=)5,C =3) (H=3,W=3,C = 3) (H=3,W=3C=1)
Channel O (e.g. R in RGB) ’ X
Horizontal stride = 1| =

Channel 1 (e.g. G in RGB) 15 4 sk —
Channel 2 (e.g. B in RGB) 230 sk

20 11 48 61 72 COhVOquon

87 33 71 48 100 Opera‘non

50

Convolutional Neural Networks — Convolution

Additional to the kernel size (H X W X (), there is another important
hypeparamater of the convolution kernel: the stride, i.e. by how much to slide the
kernel. In the example below, horizontal and vertical strides are set to 1.

Input tensor Convolution kernel Output tensor
(H=5,W=)5,C=3) (H=3,W=3,C=3) (H=3,W=3C=1)
Channel O (e.g. R in RGB) 20 X
Channel 1 (e.g. G in RGB) 15 sk —
Channel 2 (e.g. B in RGB) 87 | 75 sk
20 11 48 61 72 COhVOquon
87 33 71 48 100 Opera‘hon

51

Convolutional Neural Networks — Convolution

Additional to the kernel size (H X W X (), there is another important
hypeparamater of the convolution kernel: the stride, i.e. by how much to slide the
kernel. In the example below, horizontal and vertical strides are set to 1.

Input tensor Convolution kernel Output tensor

(H = SW 5C 3) (H=3W=3,C=3) (H=3,W=3,C=1)

112 | 34 20

27

25 ok

12

Channel O (e.g. R in RGB)

44 | 109 4 1 87

37 115 | 60 88
24 37 92 | 145
50 108 § 124 | 44
71 133 74 58

Channel 1 (e.g. G in RGB) sk — *:*
Channel 2 (e.g. B in RGB) sk

- Convolution

> operation

52

Convolutional Neural Networks — Convolution

Additional to the kernel size (H X W X (), there is another important
hypeparamater of the convolution kernel: the stride, i.e. by how much to slide the
kernel. In the example below, horizontal and vertical strides are set to 1.

Input tensor Convolution kernel Output tensor
(H=5W=)5,C =3) (H=3,W=3,C = 3) (H=3,W=3C=1)
Channel O (e.g. R in RGB) ’ X
Channel 1 (e.g. G in RGB) 15 | so 4 sk — ~ ~
Channel 2 (e.g. B in RGB) 230 sk
- Convolution
87 33 71 48 100 Opera‘hon

53

Convolutional Neural Networks — Convolution

Another hyper parameter of the convolution layer is padding. Sometimes you
might want to pad the input tensor with a border of zeros, e.g. to avoid border
values in the input to be less important in the final result. The width of this border

is called the padding size.

(H =13,

Channel O (e.g. R in RGB)

Channel 1 (e.g. G in RGB)

Channel 2 (e.g. B in RGB)

Input tensor

W=35,C=3)

112

34

20

5

55

40

1

8

27

70

87

2

190

25

240

101

67

42

12

44

109

4

87

25

37

115

60

88

177

24

37

92

145

15

50

108

124

44

71

133

74

58

27

39

82

118

243

12

250

194

145

117

37

26

129

107

99

87

75

60

191

230

20

11

48

61

72

87

33

71

48

100

>

Padding (padding size = 1)

54

0

0

0

0

0

4

112

34

20

5

55

40

1

8

27

70

87

2

190

25

240

101

67

42

12

44

109

4

87

O o0l O O] O] O O

0

0

ol o/lO0O|OC|OC| O| O

0

0

25

37

115

60

88

177

24

37

92

145

15

50

108

124

44

71

133

74

58

27

39

82

118

243

o0l OO O0O| O OC| O

Ol o0o|lOoO0O|O|OC| O| O

12

250

194

145

117

37

26

129

107

99

87

75

60

191

230

20

11

48

61

72

87

33

71

48

100

oO(lO0o|l OO OC|O|OC| O

ol o/l O0O(|O|OC| O| O

Convolutional Neural Networks — Convolution

- All weights in a convolutional kernel are learnt.
- CNN is parameter efficient: weights are shared across the whole

input (only sliding the kernel with fixed weights). Much better than
our MLP!

55

Convolutional Neural Networks — Convolution

- All weights in a convolutional kernel are learnt.

- CNN is parameter efficient: weights are shared across the whole
input (only sliding the kernel with fixed weights). Much better than
our MLP!

- One kernel provides one scalar for each position in the output
tensor.

- To increase the capacity of a convolutional layer, we learn several

kernels (output channel dimension is equal to the number of
kernels).

56

Convolutional Neural Networks — Convolution

Number of kernels

\in convolution layer

—» [Gorvorion] — —» [Gorvorion] —

Feature Map

57

Convolutional Neural Networks — Convolution

Number of kernels
\in convolution layer

— [Corolion] — — [Coroloon] — - .

Feature Map

But, CNNs are not only a sequence of convolution layers! There is another operation involved: pooling.

58

Convolutional Neural Networks — Pooling

- The pooling operation allows to reduce the spatial resolution of a tensor.
- This is a non-learned operation, i.e. not parametrized by any learnable weight.

- Sliding a kernel as for the convolution operation, but instead of computing the
weighted sum of inputs, it takes:

- The max value (Max Pooling)
- The min value (Min Pooling)
- The average value (Mean Pooling)

Example of Max Pooling Operation with kernel size 2 X 2 and stride 2 (both horizontal and vertical strides):

4 | 112 § 34 | 20 4 | 112§ 34 | 20 4 | 112 | 34 | 20 4 | 112 | 34 | 20
55 | 40 1 8 55 | 40 1 8 55 | 40 1 8 55 | 40 1 8 112(34
>
70 | 87 2 | 190 70 | 87 2 | 190 70 | 87 2 | 190 70 | 87 2 | 190 190
240 | 101 | 67 | 42 240 | 101 | 67 | 42 240 | 101 | 67 | 42 240 | 101 | 67 | 42

59

Convolutional Neural Networks — Pooling

Why do we need pooling?

1. Makes the network less sensitive to small shifts in the input by
discarding some non-important details. Pooling provides a form of local

shift invariance.

2. With lower resolution maps, convolution computations are faster.

3. Increases the size of the receptive field of each neuron.

60

Convolutional Neural Networks — Pooling

The receptive field of a neuron is the part of the input image that brings
information to the given neuron.

By applying a pooling operation, i.e. downsampling a feature map, we
increase the receptive field of next neurons.

SESE

Input image Output from Output from
layer 1 layer 2

61

Convolutional Neural Networks — Standard Architectures

27

C3: f. maps 16@10x10
INPUT C1: feature maps S4: f. maps 16@5x5
39532 6@28x28
X S2: f. maps C5: layer 76 layer OUTPUT -

N
N
&
w

6 14x14 I
@ I 120 13 13 13
N
I 1 L 1
N ‘t 5 _\ ., JE ~| 3 _\0_ -
1 i - 3 ™= 13 - 1 13 3 - - 13 dense dense
r - 27 ! 3 ~
55 384 384 256
Max
256 . :
Max Max pooling 4096 4096
Stride\| o6 | P9°ling pooling

Full conr#ectlon ‘ Gaussmn connections 224\ || of 4
Convolutions Subsampling Convolutions Subsampllng Full connection 3 AlexNet 2012
’
LeNet, 1998 Winning entry in the Imagenet

224 %224 X3 224X 224 X 64 Competition

Y

112 x[112 x 128
///Sﬁx 56 X 256 X
28 X 28 X 512 _TXTXx512
S L 1% 1%4096 11 %1000 weight layer
I
F(x) | | relu .
() convolution+ReLU bl |dentlty
@ max pooling
— fully connected+ReLLU f(x) + X
) softmax
VGG, 2014 ResNet, 2015
Deeper Network Even deeper thanks to residual connections

62

Convolutional Neural Networks — Practical

Goals:
1. Implementing a Convolutional Neural Network

2. Understanding the involved computations
3. Building a full Deep Learning pipeline in PyTorch to train a model on a given dataset

airplane %BV » """‘ 4 :"Z
automobile 221 £ S PN £ Rl g ()] e 95
o B WS ¥ B
- EEnONEESsP
deer m.ﬂ.& ﬂg
dog " m&ﬁﬂﬂu‘n
frog L= R ke
horse i.ﬂgﬂﬂﬂﬂ”m
ship agh“ﬁg.aﬁ
truck dﬂh’gi

CIFAR-10

63

O PyTorch

