
Previous lecture/practical
Any question?
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Training batches
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In the last practical you implemented train, val, and test dataloaders. An hyperparameter you 
had to pick was the batch size, i.e. the number of samples to train on at each iteration.


An input tensor from the data loader had the following shape: (B, C, H, W) 
B: batch size

C: number of channels (C=3 for an image)

H: tensor height

W: tensor width 

If you input this tensor to your CNN, all B inputs will be processed in parallel in a single 
forward pass: (B, C, H, W) —> CNN —> (B, C’, H’, W’) where C’, H’, W’ are output feature map 
dimensions.

Parallel training in Deep Learning
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Course Overview

1. Convolutional Neural Networks (Lecture + practical) 
2. Recurrent Neural Networks (Lecture + optional practical) 

3. Reinforcement Learning 1 (Johan Peralez) 
4. Reinforcement Learning 2 (Johan Peralez) 

5. Project (15h)

4



Course Overview

1. Convolutional Neural Networks (Lecture + practical) 
2. Recurrent Neural Networks (Lecture + optional practical) 

3. Reinforcement Learning 1 (Johan Peralez) 
4. Reinforcement Learning 2 (Johan Peralez) 

5. Project (15h)

5



Useful resources about RNNs

- A great blog post: https://colah.github.io/posts/2015-08-Understanding-LSTMs/ 

- Hochreiter et al., Long short-term memory, Neural computation 1997 

- Cho et al., Learning Phrase Representations using RNN Encoder-Decoder for Statistical 
Machine Translation, arXiv 2014 
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https://colah.github.io/posts/2015-08-Understanding-LSTMs/


Why do we need memory?
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When dealing with temporal data (text, videos, robotics, etc.), keeping 
track of the past becomes important…



Inductive bias
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When dealing with temporal/sequential data, keeping track of essential 
information inside a vectorial memory seems to be a good idea! 

This is the main idea behind recurrent neural networks (RNNs)… We call 
this memory the hidden state.



Processing temporal information with convolutions
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In the previous lecture, we were sliding convolution kernels along image 
dimensions.  

Can we slide along time dimension? Yes, we can!

Time

Embedding size
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In the previous lecture, we were sliding convolution kernels along image 
dimensions.  
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Time
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Recurrent Neural Networks
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All figures in the next slides will be taken from the excellent blog post by 
Chris Olah: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

https://colah.github.io/posts/2015-08-Understanding-LSTMs/


Recurrent Neural Networks — Recurrent Unit
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Our unit  deals with sequential data: at time , it is fed with input  and 
outputs a latent representation , but not only: it is also fed with an 
internal representation from the past step .

A t Xt
ht

t − 1

https://colah.github.io/posts/2015-08-Understanding-LSTMs/


Recurrent Neural Networks — Recurrent Unit
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Let’s unroll the process along the time axis!

https://colah.github.io/posts/2015-08-Understanding-LSTMs/


Recurrent Neural Networks — Backpropagation Though Time
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RNNs are trained with Backpropagation Through Time (BPTT): 

https://colah.github.io/posts/2015-08-Understanding-LSTMs/


Recurrent Neural Networks — Backpropagation Though Time

17https://colah.github.io/posts/2015-08-Understanding-LSTMs/

RNNs are trained with Backpropagation Through Time (BPTT): 

Gradients of the loss with 
respect to parameters

https://colah.github.io/posts/2015-08-Understanding-LSTMs/


Recurrent Neural Networks — Issues with standard RNNs
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Vanilla RNNs tend to be hard to train and suffer from shortcomings: 

- In practice, RNNs struggle to memorise long-term context, i.e. 
information that appeared long time ago in the sequence.  

- Vanishing and/or exploding gradients: small gradients vanish and high 
gradients explode respectively over long time ranges.



Recurrent Neural Networks — Issues with standard RNNs
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Vanilla RNNs tend to be hard to train and suffer from shortcomings: 

- In practice, RNNs struggle to memorise long-term context, i.e. 
information that appeared long time ago in the sequence.  

- Vanishing and/or exploding gradients: small gradients vanish and high 
gradients explode respectively over long time ranges.

New approaches based on gagng mechanisms were introduced.



LSTM — Starting from a standard RNN…
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https://colah.github.io/posts/2015-08-Understanding-LSTMs/


LSTM — … to the LSTM architecture
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https://colah.github.io/posts/2015-08-Understanding-LSTMs/


LSTM — The Cell State
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The Cell State  stores the information we want to remember.Ct

https://colah.github.io/posts/2015-08-Understanding-LSTMs/


LSTM — The Cell State
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Removing old information 
from Ct−1

Adding new information 
to Ct

https://colah.github.io/posts/2015-08-Understanding-LSTMs/


LSTM — Gates
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A gate is a mechanism for deciding whether or not to let information go 
through. It is composed of a sigmoid function and a pointwise 
multiplication operation. 

The sigmoid outputs a value between 0 and 1: 
0 —> “don’t let any information go through” 
1 —> “let all information go through”

https://colah.github.io/posts/2015-08-Understanding-LSTMs/


LSTM — The Forget Gate: What do we want to forget?
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The Forget Gate decides what information to forget from the Cell State. 
From  and , it predicts a scalar between 0 and 1 for 
each dimension of the Cell State. The whole vector is .

ht−1 ∈ ℝd xt ∈ ℝd

ft ∈ ℝd

Sigmoid activation  
function

Weights of the linear 
layer Bias term

https://colah.github.io/posts/2015-08-Understanding-LSTMs/


LSTM — The Input Gate: What new information to remember?
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The Input Gate decides what channels in the Cell State to update by 
predicting the  vector. Another linear layer followed by a tanh activation 
function outputs update candidates .

it
C̃t

https://colah.github.io/posts/2015-08-Understanding-LSTMs/


LSTM — Modifying the Cell State
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We multiply  with  to forget channels we selected with the Forget Gate. 
We then add , i.e. new candidates scaled by how much to update them, as 
decided by the Input Gate.

Ct−1 ft
itC̃t

https://colah.github.io/posts/2015-08-Understanding-LSTMs/


LSTM — What to output?
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The output is a filtered version of . Another gate takes  and  as inputs, 
and outputs the vector . The latter selects channels in  that was previously 
passed through a tanh function.

Ct ht−1 xt
ot Ct

https://colah.github.io/posts/2015-08-Understanding-LSTMs/


GRU — A simpler variant of the LSTM
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There have been new methods building on top of the LSTM.  

One of them is the Gated Recurrent Unit (GRU), where the Forget and Input 
gates are merged into a single Update Gate.

https://colah.github.io/posts/2015-08-Understanding-LSTMs/


Recurrent Neural Networks — Practical
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‘M’

h3

RNN

Classifier ‘English’

Goals: 
1. Implementing a Recurrent Neural Network from scratch 
2. Understanding the involved computations 
3. Building a full Deep Learning pipeline in PyTorch to train a model on a given dataset 


