
Previous lecture/practical
Any question?

1

Training batches

2

In the last practical you implemented train, val, and test dataloaders. An hyperparameter you
had to pick was the batch size, i.e. the number of samples to train on at each iteration.

An input tensor from the data loader had the following shape: (B, C, H, W)
B: batch size

C: number of channels (C=3 for an image)

H: tensor height

W: tensor width

If you input this tensor to your CNN, all B inputs will be processed in parallel in a single
forward pass: (B, C, H, W) —> CNN —> (B, C’, H’, W’) where C’, H’, W’ are output feature map
dimensions.

Parallel training in Deep Learning

Artificial Intelligence & Data Analysis
Lecture 2: Recurrent Neural Networks

3
Pierre Marza

Course Overview

1. Convolutional Neural Networks (Lecture + practical)
2. Recurrent Neural Networks (Lecture + optional practical)

3. Reinforcement Learning 1 (Johan Peralez)
4. Reinforcement Learning 2 (Johan Peralez)

5. Project (15h)

4

Course Overview

1. Convolutional Neural Networks (Lecture + practical)
2. Recurrent Neural Networks (Lecture + optional practical)

3. Reinforcement Learning 1 (Johan Peralez)
4. Reinforcement Learning 2 (Johan Peralez)

5. Project (15h)

5

Useful resources about RNNs

- A great blog post: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

- Hochreiter et al., Long short-term memory, Neural computation 1997

- Cho et al., Learning Phrase Representations using RNN Encoder-Decoder for Statistical
Machine Translation, arXiv 2014

6

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Why do we need memory?

7

When dealing with temporal data (text, videos, robotics, etc.), keeping
track of the past becomes important…

Inductive bias

8

When dealing with temporal/sequential data, keeping track of essential
information inside a vectorial memory seems to be a good idea!

This is the main idea behind recurrent neural networks (RNNs)… We call
this memory the hidden state.

Processing temporal information with convolutions

9

In the previous lecture, we were sliding convolution kernels along image
dimensions.

Can we slide along time dimension? Yes, we can!

Time

Embedding size

Processing temporal information with convolutions

10

In the previous lecture, we were sliding convolution kernels along image
dimensions.

Can we slide along time dimension? Yes, we can!

Time

Embedding size

Processing temporal information with convolutions

11

In the previous lecture, we were sliding convolution kernels along image
dimensions.

Can we slide along time dimension? Yes, we can!

Time

Embedding size

Processing temporal information with convolutions

12

In the previous lecture, we were sliding convolution kernels along image
dimensions.

Can we slide along time dimension? Yes, we can!

Time

Embedding size

Recurrent Neural Networks

13

All figures in the next slides will be taken from the excellent blog post by
Chris Olah: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Recurrent Neural Networks — Recurrent Unit

14https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Our unit deals with sequential data: at time , it is fed with input and
outputs a latent representation , but not only: it is also fed with an
internal representation from the past step .

A t Xt
ht

t − 1

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Recurrent Neural Networks — Recurrent Unit

15https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Let’s unroll the process along the time axis!

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Recurrent Neural Networks — Backpropagation Though Time

16https://colah.github.io/posts/2015-08-Understanding-LSTMs/

RNNs are trained with Backpropagation Through Time (BPTT):

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Recurrent Neural Networks — Backpropagation Though Time

17https://colah.github.io/posts/2015-08-Understanding-LSTMs/

RNNs are trained with Backpropagation Through Time (BPTT):

Gradients of the loss with
respect to parameters

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Recurrent Neural Networks — Issues with standard RNNs

18

Vanilla RNNs tend to be hard to train and suffer from shortcomings:

- In practice, RNNs struggle to memorise long-term context, i.e.
information that appeared long time ago in the sequence.

- Vanishing and/or exploding gradients: small gradients vanish and high
gradients explode respectively over long time ranges.

Recurrent Neural Networks — Issues with standard RNNs

19

Vanilla RNNs tend to be hard to train and suffer from shortcomings:

- In practice, RNNs struggle to memorise long-term context, i.e.
information that appeared long time ago in the sequence.

- Vanishing and/or exploding gradients: small gradients vanish and high
gradients explode respectively over long time ranges.

New approaches based on gagng mechanisms were introduced.

LSTM — Starting from a standard RNN…

20https://colah.github.io/posts/2015-08-Understanding-LSTMs/

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM — … to the LSTM architecture

21https://colah.github.io/posts/2015-08-Understanding-LSTMs/

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM — The Cell State

22https://colah.github.io/posts/2015-08-Understanding-LSTMs/

The Cell State stores the information we want to remember.Ct

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM — The Cell State

23https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Removing old information
from Ct−1

Adding new information
to Ct

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM — Gates

24https://colah.github.io/posts/2015-08-Understanding-LSTMs/

A gate is a mechanism for deciding whether or not to let information go
through. It is composed of a sigmoid function and a pointwise
multiplication operation.

The sigmoid outputs a value between 0 and 1:
0 —> “don’t let any information go through”
1 —> “let all information go through”

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM — The Forget Gate: What do we want to forget?

25https://colah.github.io/posts/2015-08-Understanding-LSTMs/

The Forget Gate decides what information to forget from the Cell State.
From and , it predicts a scalar between 0 and 1 for
each dimension of the Cell State. The whole vector is .

ht−1 ∈ ℝd xt ∈ ℝd

ft ∈ ℝd

Sigmoid activation
function

Weights of the linear
layer Bias term

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM — The Input Gate: What new information to remember?

26https://colah.github.io/posts/2015-08-Understanding-LSTMs/

The Input Gate decides what channels in the Cell State to update by
predicting the vector. Another linear layer followed by a tanh activation
function outputs update candidates .

it
C̃t

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM — Modifying the Cell State

27https://colah.github.io/posts/2015-08-Understanding-LSTMs/

We multiply with to forget channels we selected with the Forget Gate.
We then add , i.e. new candidates scaled by how much to update them, as
decided by the Input Gate.

Ct−1 ft
itC̃t

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM — What to output?

28https://colah.github.io/posts/2015-08-Understanding-LSTMs/

The output is a filtered version of . Another gate takes and as inputs,
and outputs the vector . The latter selects channels in that was previously
passed through a tanh function.

Ct ht−1 xt
ot Ct

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

GRU — A simpler variant of the LSTM

29https://colah.github.io/posts/2015-08-Understanding-LSTMs/

There have been new methods building on top of the LSTM.

One of them is the Gated Recurrent Unit (GRU), where the Forget and Input
gates are merged into a single Update Gate.

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Recurrent Neural Networks — Practical

30

‘A’

h0

RNN

‘D’

h1

RNN

‘A’

h2

RNN

‘M’

h3

RNN

Classifier ‘English’

Goals:
1. Implementing a Recurrent Neural Network from scratch
2. Understanding the involved computations
3. Building a full Deep Learning pipeline in PyTorch to train a model on a given dataset

